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ABSTRACT: 
 
Glaciers are very important climate indicators. Although visible remote sensing techniques can be used to extract glacier variations 
effectively and accurately, the necessary data are depending on good weather conditions. In this paper, a method for determination 
of glacier surface area using multi-temporal and multi-angle high resolution TerraSAR-X data sets is presented. We reduce the “data 
holes” in the SAR scenes affected by radar shadowing and specular backscattering of smooth ice surfaces by combining the two 
complementary different imaging geometries (from ascending and descending satellite tracks). Then, a set of suitable features is 
derived from the intensity image, the texture information generated based on the gray level co-occurrence matrix (GLCM), glacier 
velocity estimated by speckle tracking, and the interferometric coherence map. Furthermore, the features are selected by 10-fold-
cross-validation based on the feature relevance importance on classification accuracy using a Random Forests (RF) classifier. With 
these most relevant features, the glacier surface is discriminated from the background by RF classification in order to calculate the 
corresponding surface area. 
 

1. INTRODUCTION 

The glaciers in mountain areas sensitively interact with climate 
fluctuations and therefore they become very important climate 
indicators. Satellite remote sensing has a great capability in 
monitoring the glaciers located in cold high altitude regions and 
inaccessible areas. Visible sensors have been extensively used 
to map ice covered areas (Paul et al., 2002; Paul et al., 2004; 
Kargel et al., 2005; Hendriks and Pellikka, 2007), but the 
limitations are their dependence on weather conditions, which 
cannot provide timely information of the target area, especially 
some mountainous glaciers with year round cloudy conditions. 
However, SAR, due to its all day, all weather imaging 
capabilities, can reliably collect data with a pre-defined 
temporal interval over long periods of time with a spatial 
resolution compatible with the application of glacier surface 
area determination. Within opposition to that, using optical 
remote sensing imagery it might happen that cloud-coverage 
makes one (or more) acquisitions in the interval impossible, 
thus leading to a time series with “gaps”. 
Much work has been done to map and study glaciers and ice 
sheets using SAR techniques: most of the work is based on 
interferometric information or polarimetric data (Shi and 
Dozier, 1993; Dall et al., 2004; Zhou et al., 2010). In this paper, 
we propose a method for glacier area determination using multi-
temporal and multi-angle high resolution TerraSAR-X data sets 
aiming to reduce the ‘data holes’ caused by radar shadowing 
and specular backscattering of smooth ground surface. The 
surface area of a glacier is an important parameter not only for 
the two-dimensional mapping of changes of the glacier extent; 
it furthermore can be used to get rough estimates of the 
corresponding glacier volume based on geophysical models 
(Bahr et al., 1997). 
 
 
 

2. GLACIER SURFACE ESTIMATION 

The work proposed in this paper aims at the estimation of 
glaciers surface areas. For this, first a supervised classification 
is carried out in order to distinguish the glacier from the 
background. Afterwards, the classification result is filtered and 
post-processed using low-level morphological operators. Based 
on this procedure, the glacier outline is delineated and the 
surface area calculated. 
 
2.1 Feature Definitions 

2.1.1 Glacier Velocity:  
 

 
Fig.1. Improved glacier motion estimation result from a part of 
the surging area of the Taku Glacier. Red dash line: the 
manually extracted boundaries of the glacier. Although the 
velocity map already gives a good approximation of the whole 
glacier surface, there are still some gaps left (e.g. in the upper 
right part of the image). 
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The glacier velocity, an important control parameter 
determining the mass balance, is a crucial feature that 
discriminates the glacier from the surrounding, non-moving, 
environment. The glacier motion maps utilized for the work 
described in this paper are obtained by speckle tracking based 
on cross-correlation of the intensity images. However, many 
‘data holes’ appear in these motion if they are generated from 
SAR pairs imaged from just ascending or just descending 
satellite tracks: On the one hand, mountainous terrain  is 
affected by radar shadowing, on the other hand  smooth ice 
surfaces cause specular backscattering such that no signal is 
returned. Thus, based on multi-temporal and multi-angle SAR 
images (at least 4 scenes with 2 from ascending track and 2 
from descending track), the motion maps derived from both 
imaging geometries are fused using a probabilistic graphical 
model for improving the estimation coverage and accuracy. The 
possibility to include context knowledge into the probabilistic 
graphical model furthermore helps to make the results more 
reasonable concerning ice physics. The potential for the 
improvement of ice motion estimation has already been shown 
in (Fang et al., 2013). Figure 1 shows the final velocity 
estimation result from a part of the surging area of the Taku 
Glacier. It is supposed that the velocity information should be a 
very good indicator for discriminating the glacier from the non-
moving scene content (e.g., mountain area). 
 
2.1.2 Coherence Map: The interferometric coherence map 
is generated by using two TerraSAR-X repeat cycle scenes 
acquired in same imaging geometries (either both ascending or 
both descending). As the moving glacier shows strong temporal 
decorrelation leading to low coherence values, the coherence 
map can be an important indicator for glacier classification. 
 
2.1.3 Texture Information: Texture is one of the important 
characteristics used in image classification. The second-order 
gray-level co-occurrence matrix (GLCM) proposed by Haralick 
(1979) is a well proved effective approach to analyzing image 
texture features. The GLCM approach to texture analysis is 
based on the conjecture that the texture information in an image 
is contained in the overall or average spatial relationship 
between the gray tones of the image.  
In this work, the GLCM of each pixel is generated by 4 
directions comparing its 14 neighbourhoods which surround 
this centre pixel. Afterwards, 4 features are derived from the 
GLCM: contrast, correlation, energy and homogeneity, which 
are calculated by 
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Then, also the mean and standard deviation values of the 4 
calculations from 4 different directions of these 4 features are 
calculated, such that finally 8 texture features are defined to be 
used in the experiments. Much of the glacier surface area is 
featured by characteristic textures (e.g., crevasses or drainage 
patterns), which makes the texture a useful kind of information 
for the classification. 
 
2.1.4 Others: The other basic features used in this 
investigation can be directly retrieved from the image data: the 
intensity value and the other 3 features derived from the 
intensity value employing a 7*7 window size (mean, median, 
standard deviation). 
 
2.2 Feature Selection based on Random Forest 

2.2.1 Random Forest: The Random Forest (RF) is an 
ensemble learning method for classification (and regression) 
that is based on a multitude of decision trees at training time 
and outputting the classification result that is the mode of the 
classes provided by individual trees. Each tree in the forest 
classifies the sample based on an independently sampled 
random variable set which are used to best split the node under 
a certain criteria (e.g., information gain, Gini impurity). After 
every tree grows until minimum node size is reached, the forest 
chooses the classification having the most votes (Breiman, 
2001).  
In parallel, the feature relevance (variable importance), i.e. the 
contribution of the respective feature to the classification 
accuracy is generated at the training time, which can be a useful 
measure for feature selection and reduction of the feature space 
dimension. 
 
2.2.2 Feature Selection Method: This work utilizes a 
feature selection method based on feature relevance generated 
by RF and the sequential backward selection method (Wei et 
al., 2012). The general idea is that we rank the features firstly 
according to the feature importance score while the overall 
classification accuracy is calculated for this variable set, and 
then delete the feature that scored lowest. This operation is 
repeated several times until we find the variable set with the 
best classification performance. 
In order to make the test more reliable, in every round for 
feature selection, 10-fold-cross-validation is used. The samples 
are randomly divided into 10 parts, with nine parts for training 
the tree classifier and the rest for test. During the 10 loops, the 
relevance importance in the loop with highest classification 
accuracy for the test samples is used for ranking features. 
Additionally, the average classification accuracy of this round 
is the mean value of the 10 loops. 
 
2.3 Glacier Classification 

Combining the selected features based on the method described 
above, a classification of the glacier surface can be carried out 
by the RF classifier. As the RF classification constituted by two 
parts (i.e., training and testing parts), we use two separate SAR 
scenes, with the same area coverage, for training trees and final 
classification, which on the other hand can also guarantee the 
experiment reliability. 
 
2.4 Glacier Outline Delineation 

Aiming to generate the reliable delineation of the glacier used 
for an accurate surface area calculation, the classification result 
is firstly median filtered, followed by the morphological 
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operations closing and opening. Finally, the outline is detected 
by tracing the exterior boundary of the glacier area in the binary 
classification map. 
 
2.5 Glacier Surface Area Calculation 

According to the glacier classification result, the glacier surface 
area surface area A can be roughly estimated easily by 
multiplying the number of correctly classified glacier pixels N 
with the pixel size:   

                           * *A N a b=                                    (5) 
where a and b are the pixel size in azimuth and range direction, 
respectively. 
A more precise estimation of the glacier surface area can be 
achieved, based on the glacier outline detection result, using the 
Gauss method for area calculation: 

                        ( )1 12 n n nA y x x− += Σ −                          (6) 
where x and y are the 2D positions of the points describing the 
border of the glacier.  
 
 

3. STUDY AREA AND DATASETS 

The Juneau Icefield is a low-latitude glacier system of small 
scale located in southeast Alaska, and much research work has 
been carried out to study the glaciers located in this Icefield 
(McGee et al., 2007; Pelto et al., 2008). In this paper, the scenes 
of Juneau Icefield imaged by high resolution TerraSAR-X are 
applied for experiments. All the experimental works in this 
paper are based on 4 TerraSAR-X repeat cycle scenes acquired 
in stripmap mode from two different imaging geometries 
(ascending and descending). 2 scenes from ascending orbit are 
acquired with 11days interval, and the other 2 imaged from the 
descending orbit are complementarily used for reducing the 
“data holes” in the SAR scenes (see Table 1). 
 

Imaging  
Mode  

Acquisition 
Start Time  

Incidence  
Angle Min  

Incidence  
Angle Max  

Pass 
Direction  

SM  
2009-07-

11T02:31:42  
35,81  38,79  ascending  

SM  
2009-07-

22T02:31:43 
35,80  38,79  ascending  

SM  
2009-06-

30T15:27:06  
26,95  30,57  descending  

SM  
2009-08-

02T15:27:08 
26,94  30,57  descending  

 
Table 1. TerraSAR-X data delineation used for experiment 

(SM-stripmap mode) 
 
The TerraSAR-X Single Look Slant Range Complex (SSC) data 
used are firstly orthorectified and geocoded using precise 
available DEM data. The enhanced data have a ground 
resolution of 3m with pixel spacing of 1.5m in both azimuth 
and range direction. The processed SAR scenes used in this 
research are plotted on the ground truth area shown in Figure 2. 
Finally, one part of the Taku Glacier surging area marked by a 
yellow square box is cut aiming to test the method for 
delineating glacier surface addressed in the paper. 
For the classification using the RF method, we use one of the 
ascending SAR images as the training data for tree model 
construction. Then, the trained tree model will be applied to the 
other ascending SAR image for classification. 

The test scene of the Taku Glacier (marked by the yellow box 
in Fig. 2) used for classification is shown on the upper part of 
Fig. 3. The manually generated ground truth mask image is 
shown on the lower part. All in all, 4941038 pixels belong to 
the glacier, while 6455851 pixels belong to non-glacier areas. 

 
Fig.2. Ground coverage of geo-coded SAR data plotted on an 
optical image of the scene. Red arrow: azimuth direction of 
ascending orbit; Green arrow: azimuth direction of descending 
orbit. In both tracks, TerraSAR-X is right looking. Yellow box: 
area used for experiment. (Underlying optical image ©2013 
Google Earth) 
 

 
 

Fig.3. Data used for classification test. 
 
 

4. EXPERIMENT RESULTS 

4.1 Generated Feature Set 

4.1.1 Velocity Image: Using the method described in section 
2.1.1, the velocity image in the test area is estimated with a 
smoothness constraint, reasonably considering the glacier 
physics (Fig. 4). Furthermore, the motion value differences 
between glacier and its surrounding neighbourhoods are helpful 
for classification. 
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Fig.4. Fused estimated glacier velocity map plotted on the gray 
scale SAR image. 
 
4.1.2 Coherence Map: The coherence map generated from 
the ascending SAR pair from the datasets is show in Fig. 5. It 
was found that the glacier area shows relatively low coherence, 
appearing as black in the coherence map, whereas the 
surrounding mountainous area shows higher coherence. 
However, the water area also shows low coherence, making it a 
less useful indicator for the classification of glaciers. 
 

 
 
Fig.5. Coherence map of one part of the outlet area of the Taku 
Glacier generated from two TerraSAR-X repeat cycle scenes 
with 11 days interval. 
 
4.1.3 Texture Information: Figure 6 shows the mean values 
of the four features calculated from GLCM by (1)-(4) as 
described in section 2.1.3. The water area is recognised as dark 
area in contrast, while bright in energy and homogeneity, which 
is due to the fact that water areas don’t show signal information 
in SAR images because of the specular backscattering. This is 
helpful for discriminating the glacier from the water area.  
Additionally, the standard deviations of these four calculations 
from GLCM are shown in Fig. 7 as a complementary 
measurement.  
 

 
 

Fig.6. Upper left: mean value of contrast. Upper right: mean 
value of correlation. Lower left: mean value of energy. Lower 
right: mean value of homogeneity. 
 

 
 
Fig.7. Upper left: standard deviation of contrast. Upper right: 
standard deviation of correlation. Lower left: standard deviation 
of energy. Lower right: standard deviation of homogeneity 
 
4.2 Feature Selection Result 

Based on the method described above, the original 14 features 
are processed, and finally a set with 11 features achieving 
91.05% percent of classification accuracy is selected as the best 
choice. Figure 8 indicates the relationship between the number 
of features and the classification accuracy. 
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Fig.8. Relationship between classification accuracy and feature 

number 
 
This eventually leads to the deletion of the 3 least-relevant 
features (i.e., the intensity value, standard deviation of 
correlation and energy of GLCM). The importance to the 
classification accuracy of the remaining 11 features is shown in 
the Fig. 9. The velocity information is the most important 
variable, with a rather high score, for classification in 
comparison to the others, confirming the hypothesis of section 
2.1.1. The other features are almost comparably relevant scored 
far behind that of velocity. When only use the velocity as the 
feature for classification, the accuracy is 75.73%. 
 

 
Fig.9. Feature relevance of the selected 11 features (Std: 
standard deviation, M: mean, Con: contrast, Cor: correlation, 
En: energy, Homo: homogeneity). 
 
4.3 Glacier Classification Result 

Furthermore, based on the 11 selected features and the RF 
technique, a classification of the glacier surface is carried out 
with an overall accuracy of 93.72 percent achieved (Table. 2 
and Fig. 10).  
 

 Glacier                      
(predicted)  

Non-Glacier 
(predicted) 

Glacier 
(Actual) 92.68% 7.32% 

Non-Glacier 
(Actual) 5.24% 94.76% 

        Overall Accuracy = 93.72%  
Table 2. Random Forest classification of glacier and non-glacier 
area 

 

 
 

Fig. 10. The glacier surface classification result (red colour) 
plotted on the geo-coded gray scale SAR scene.  
 
4.4 Glacier Surface Outline 

Use the method mentioned in section 2.4, the outline of the 
glacier surface is generated and shown in figure 11.  
 

 
 
Fig. 11. Glacier outline (yellow line) determination result 
plotted on the gray scale SAR image. Red box: glacier area 
failed to be classified. 
 
4.5 Glacier Surface Area 

Employing (5), we roughly obtain 10.31km2 as the first surface 
area estimation result. Then, according to (6) and the surface 
outline of section 4.4, the more accurate glacier area result is 
calculated as 11.01km2. This result is much different from 
firstly calculation, which is probably because of the subpixel 
accuracy achieved by (6). 
In order to compare with the ground truth, we plot the four 
corners of the test scene on optical image via Google earth and 
then delineate the borders of glacier manually, and the area 
estimation result is 12.12km2 (Fig. 12), which has 9.16% 
relative difference between the result calculated by our method. 
As the ice balance has been nearly stable for a long period 
(Pelto et al., 2008), the ground truth data acquired in summer 
2010, one year later than our experiment data, is comparable. 
Then, the relative difference above indicates that the addressed 
method in this paper for glacier surface determination is 
effective.  
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Fig. 12. Ground truth data plotted on an optical image of the 
scene. Red polygon: the exact glacier area derived based on the 
optical image (acquired in summer 2010) manually. 
(Underlying optical image ©2013 Google Earth) 
 
 

5. DISCUSSION AND CONCLUSION 

This paper proposes a framework to fuse multi-temporal 
TerraSAR-X stripmap data from both ascending and descending 
orbits for the determination of the surface area of glaciers. In 
order to achieve this goal features such as coherence map, 
texture information, and pre-estimated velocity maps are used 
for a classification of the glacier surface. Low-level image 
processing techniques are then applied in order to delineate the 
glacier outlines, from which the glacier surface can be 
estimated. It has been shown that these features allow for an 
appropriate discrimination between glacier and non-glacier 
areas. The estimated surface area does effectively fit the ground 
truth data.  
However, there are still many improvements left for further 
research. For instance, the classification of the glacier still fails 
in some places (cf. red box in Fig. 11), which is because of the 
lack of velocity and other features in these areas affected by 
radar shadowing or specular backscattering in both satellite 
imaging geometries. This might be figured out by detecting 
glacier edges which are indicated by double bounce 
backscattering using an appropriate edge detection method and 
fusion with the classification result.  
In future work, a precise knowledge of the glacier surface area 
is expected to help the mapping of two-dimensional glacier 
changes as well as serve as an important indicator for glacier 
volume estimation within geophysical models. 
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