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ABSTRACT:

This paper presents a method to efficiently compute the visibility of a 3D model seen from a series of calibrated georeferenced images.
This is required to make methods aimed at enriching 3D models (finer reconstruction, texture mapping) based on such images scalable.
The method consists in rasterizing the scene on the GPU from the point of views of the images with a known mapping between colors
and scene elements. This pixel based visibility information is then made higher level by defining a set of geometric rules to select
which images should be used when focusing on a given scene element. The visibility relation is finally used to build a visibility graph
allowing for efficient sequential processing of the whole scene

1 INTRODUCTION

One of the most investigated applications of mobile mapping is
the enrichment an existing 3D urban model (obtained from aerial
photogrammetry for instance) with data acquired at the street
level. In particular, the topics of facade reconstruction (Frueh
and Zakhor, 2003) and/or texture mapping (Bénitez et al., 2010)
have recently received a strong interest from the photogramme-
try and computer vision communities. An important step in such
applications is to compute the visibility of the scene, that is to
answer to the questions:

• Which scene element is visible at a given pixel of a given
image (pixel level)

• Which scene elements are seen well enough in a given im-
age, i.e. for which scene elements does the image contain
significant information (image level)

Depending on the applications, these questions can be asked the
other way, that is querying the images/pixels seeing a given scene
element or 3D point. In practice, mobile mapping generates a
large amount of data, and an acquisition led on an average sized
city will generate tens of thousands of images of tens of thousands
of scene elements. In that case, a per pixel visibility computation
based on ray tracing as done usually (Bénitez and Baillard, 2009)
becomes prohibitively costly.

The first part of this paper proposes instead a visibility computa-
tion method taking advantage of the graphics hardware to make
this computation tractable. Another problem arising in handling a
large number of images acquired in an urban environment is that
a given scene element might be seen at various distances and with
various viewing angles during the acquisition. As a result, the set
of images that view a given scene element will be heterogeneous,
thus hard to handle in most applications. The second part of this
paper tackles this issue by proposing appropriate geometric cri-
teria in order to reduce this set to a more homogeneous one, and
where the images contain substantial information about the scene
element.

The contributions of this paper are twofold, and both aim at facil-
itating the exploitation of mobile imagery at large scale in urban
areas:

• Fast per pixel visibility complex computation (Section 2)

• Quality aware and memory optimized image selection (Sec-
tion 3)

Results are presented and discussed in Section 4, and conclusions
and future works are detailed in Section 5.

1.1 Previous works

Enriching an existing 3D city model with ground based imagery
is a quite important topic in photogrammetry (Haala, 2004), as
well as a major application of mobile mapping systems (Bénitez
et al., 2010). More precisely, the visibility computation method
presented in this paper is designed to allow scalability of:

• Facade texture mapping methods: the images are used to
apply a detailed texture to the facades of the model. This is
especially important for 3D models built and textured from
aerial images for which the facades textures are very dis-
torted.

• Reconstruction from images: the images are used to build
a detailed 3D model of objects of interest such as facades
(Pénard et al., 2004) or trees (Huang, 2008). In this case,
a careful selection of the images to input the reconstruction
method should be made. This paper proposes an efficient
approach to automatize this selection as long as a rough 3D
model of the object to reconstruct is known (rectangle for
a facade, sphere or cylinder for a tree), which is required
to make such methods applicable to large scale reconstruc-
tions.

In most reconstruction/texture mapping work relying on mobile
imagery, the problem of visibility computation is raised but of-
ten not explicitly tackled, so we guess that the image selection
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is either made manually from visual inspection, probably using
a GIS. Whereas this is sufficient to demonstrate the pertinence
of a method, this becomes a major lock when considering scala-
bility to an acquisition led over an entire city. In order to solve
this problem, (Bénitez and Baillard, 2009) proposes and com-
pares three approaches to visibility computation: 2D/3D ray trac-
ing and Z buffering. The 2D approach is the fastest but the 2D
approximation fails to give the correct visibility in all the cases
when buildings are visible behind others, which frequently oc-
curs in real situations. 3D ray tracing and Z buffering do not
have this limitation but computation time is important even for a
very sparse sampling of the solid angle of the image. This can
be an issue as if too few rays are traced, scene elements seen by
a camera may be missed. Moreover, this is insufficient to handle
occlusions at the scale of a pixel.

As mentioned in (Bénitez et al., 2010), facade texture mapping
calls for a per pixel visibility computation to take into account
two kinds of occlusions: predictable occlusions that may be pre-
dicted by the model to texture (parts of the model hiding the
facade to texture in the current view), and unpredictable occlu-
sions. Unpredictable occlusions can be tackled based on laser
and/or image (Korah and Rasmussen, 2008) information. Pre-
dictable occlusions require to compute visibility masks of the 3D
objects to texture (Wang et al., 2002). Such per pixel visibility
computation is extremely costly, and the purpose of this paper is
to make it tractable. We achieve this by exploiting the GPU ren-
dering pipeline, which is known to be much faster than the CPU
as it is extremely optimized for that purpose, and is in fact much
more adapted to our problem.

It should be mentioned that an alternative to visibility computa-
tion exists for 3D model enriching from ground data. It consists
in constructing a textured 3D model from the ground data alone,
then registering this ground based model to the 3D model to en-
rich. This is the preferred methodology in case laser scanning
data was acquired simultaneously to the images. For instance, in
(Frueh and Zakhor, 2003) and (Frueh and Zakhor, 2004) a ground
based model is registered to the initial 3D city model based on
Monte Carlo localization, then both models are merged. More re-
cently, this was done based on images only with a reconstruction
obtained by SLAM and registered by an Iterative Closest Point
(ICP) method (Lothe et al., 2009). This could also be applied
to the purely street side city modeling approach of (Xiao et al.,
2009).

2 PIXELWISE VISIBILITY

This section presents the core of our method, which is to effi-
ciently compute the visibility complex pixelwise by rasterization
on the GPU. More precisely, we aim at finding which object of the
3D scene should be visible on each pixel of each acquired image.
The obvious way to do that is to intersect the 3D ray correspond-
ing to that pixel with the 3D scene, which is very costly even
when optimizing this computation based on spatial data struc-
tures. In order to reduce computation time, we propose instead
to rasterize the 3D scene from the viewpoint of each camera, that
is to simulate the real life acquisition using the highly optimized
rendering pipeline of the GPU. It relies on two successive steps:

1. Build a virtual camera in the 3D model accordingly to the
extrinsic and intrinsic parameters of our real life camera
(Section 2.1)

2. Perform a rasterization of the scene (see Fig. 1(b)) in a GPU
buffer with a unique identifier per object of interest (Section
2.2).

(a) Real image

(b) Virtual image

Figure 1: A real image and superposable virtual image obtained
by capturing the 3D model from the same point of view

2.1 Camera parameters transfer

Extrinsic parameters: Building an OpenGL camera simply re-
quires to set the appropriate 4 by 4 matrix corresponding to the
projective transform. However, special care should be taken as
GPUs usually work in single precision floating point coordinates,
as their development has always been driven by the games indus-
try that focuses more on performance than on precision. This is
completely incompatible with the use of geographic coordinates,
and can lead to unacceptable imprecision during the rendering.
A simple workaround is to choose a local frame centered within
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the 3D scene, in which both the 3D model coordinates and the
camera orientation will be expressed.

Intrinsic parameters: Calibration of a camera sets its intrinsic
parameters consisting mainly in its focal, principal point of au-
tocollimation (PPA) and inner distortion. Conversely, OpenGL
relies on the notion of field of view (FOV), the PPA is always at
the perfect center of the image and distortion cannot be applied.
In most cases, the PPA is close enough to the image center for
this to be negligible. If it is not, a larger image should be cre-
ated containing the image to be rendered and with its center at
the PPA, then cropped. Finally, the field of view should then be
be computed by:

FOV = 2. ∗ tan−1

(
max(width, height)

2f

)
; (1)

A simple means to handle the distortion is to resample the ren-
dered image to make it finally perfectly superposable to the ac-
quired one. Depending on the application, this resampling might
not be necessary, and it might be more efficient to apply the dis-
tortion on the fly when a visibility information is queried. In both
cases, the width and height of the rendered image should be cho-
sen such that its distortion completely encompasses the acquired
image.

2.2 Rasterization

The problem of rendering (generating virtual images of 3D scenes)
has been widely studied in the computer graphics community, and
two main methodologies have arisen:

1. Rasterization consists in drawing each geometric primitive
of the scene using a depth buffer (also called Z-buffer) to
know which primitive is in front of which from the current
viewpoint.

2. Ray tracing consist in intersecting each 3D ray correspond-
ing to a screen pixel with the scene, then iterating on re-
flected rays in order to define the appropriate color for that
pixel.

Ray tracing is known to be much more expensive, but allows for
very realistic lighting and reflexion effects. Ray tracing is also
much harder to parallelize, such that GPUs always perform ren-
dering by rasterization, making it extremely efficient and well
suited in our case.

The result of a rasterization is a color image (the Z-buffer is also
accessible if needed). Thus, the simplest way to get a visibility
information from a rasterization is to give a unique color to each
scene object of interest, and create a mapping between colors and
scene objects. The only limitation to this method is that the num-
ber of objects of interests should not exceed the number of colors
(2563 = 224 ≈ 16.8 million) which in practice is completely
sufficient (there are much less objects of interest such as facades
or trees in the largest cities).

The second problem is that the size of the image to render might
be arbitrarily larger than the size of the screen of the computer on
which we will run the visibility computation. Hopefully, GPUs
can perform offline rendering, that is to render a scene in a buffer
of the GPU which size is only limited by the graphical mem-
ory (GRAM). This buffer can then be transferred to the RAM,
and saved on the disk if required. Using lossless compression is
strongly advised as colors now have an exact meaning that should

Figure 2: Set of images selected by our method as containing
pertinent information about a facade (non wireframe)

absolutely be preserved, and most images rendered this way only
present a limited number of colors arranged in large objects al-
lowing for high lossless compression rates. In our experiments,
the 1920x1080 buffers stored this way weighted 12 KBytes in
average, which corresponds to a compression rate of 99.8%.

The result of this step, that we will call visibility image (Fig. 1),
stores the direct visibility information, i.e. the answer to the ques-
tion: Which is the object seen at a given pixel of a given image?
Some more work still needs to be done in order to answer effi-
ciently to the image level question: which objects are seen well
enough in a given image ? And the inverse one: which images see
a given object well enough? The next section proposes a method
to answer this questions that relies on a proper definition of the
term ”well enough” in this context.

3 PICTURE LEVEL VISIBILITY

Most reconstruction/texture mapping problems can be decom-
posed into one sub-problem for each scene element of interest.
In this case, we need to be able to know which images will be
useful to process the scene element in order to load them into the
computer’s memory. Loading too many will impair processing
time and memory footprint, but it can even lower the quality of
the result in some cases. This section tackles these problems in
two steps:

1. Defining geometric criteria to select which images are useful
for the processing.

2. Building a visibility graph to answer to inverse visibility
queries.
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Optionally, we will propose two applications of the visibility graph
structure:

1. Optimizing the memory handling in sequential treatment.

2. Selecting a single sequence to avoid limit issues due to non
static scene elements (shadows, mobile objects,...).

3.1 Geometric criteria

The first naive approach to determining the scene elements seen
in an image is simply to build a list of all colors present in a vis-
ibility image, and declare the corresponding scene elements as
viewed by the image. This is both inefficient and too simplistic.
In fact, we want to select the images to use to process a scene ele-
ment, so only the images seeing that element well enough should
be used. Thus we propose two geometric criteria to select only
the appropriate images:

1. Image content: The image should contain sufficient infor-
mation about the scene element, or in other terms, the scene
element should cover at least a certain portion of the visibil-
ity image. This criterion also has a practical aspect: we can
accelerate the color counting by only checking the colors of
a small sparse subset of the image. For instance, if the cri-
terion corresponds to 10 000 pixels, checking only every 1
000 pixel is sufficient, provided that the sampling is homo-
geneous enough, and the criterion becomes having at least
10 samples of a given color. This will accelerate the pixel
counting without impairing the result.

2. Resolution: The size of the pixel projected on the scene
element should not exceed a given value (say 25cm2) or a
given multiple (say 5 times) of the smallest projected pixel
size. We estimate this projected pixel size at the barycenter
of the projection of the scene element in the visibility image
(this can be done simultaneously to the color counting, us-
ing the same sparse sampling). This criterion penalizes both
distance and bad viewing angles.

These criteria should be sufficient for most applications, but they
can be adapted if needed. An example of the set of images se-
lected for a given scene element (facade) based on these criteria
is shown on Fig. 2.

3.2 The visibility graph

The geometric criteria cited above establish a relation: image Ii
sees element Ej well enough, or conversely element Ej is seen in
image Ii well enough. This relation is built from the image point
of view as for each image we define which elements are seen well
enough. However, we usually need the inverse information: for
the scene element on which we want to focus our method, which
image should we use ? This requires to build a visibility graph
containing two types of nodes (image and scene elements). Each
visibility relation will be an edge in this graph between an image
and an element node, that will be registered from both image and
edge point of view. Constructing this graph is required to inverse
the visibility information, but it is also useful for optimization
and optionally for further simplification. A visualization of this
visibility graph is proposed in Fig. 3.

Figure 3: Various views of the visibility graph computed on our
test scene (for clarity, only 10% of the images were used). Image
(resp. scene) nodes are displayed in blue (resp. red).

3.3 Optimizing memory handling

The visibility graph allows to cut a reconstruction/texture map-
ping problem into sub-problems by inputing only the images see-
ing a scene element well enough. A trivial approach to process an
entire scene sequentially is to load all these images when process-
ing each scene element, then free the memory before processing
the next element. This trivial approach is optimal in terms of
memory footprint, but an image seeing N scene elements will be
loaded N times, which increases the overall computing time, es-
pecially if the images are stored on a Network Attached Storage
(NAS). Using a NAS is common practice in mobile mapping as
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Dataset #walls #images path length
Ours 4982 5344 (334x16) 1km

Bénitez 11408 1980 (990x2) 4.9km

Table 1: Comparison between our dataset and the dataset of
Bénitez.

an acquisition produces around one TeraByte of (uncompressed)
image data per hour. The optimization we propose is useful if the
loading time is not negligible compared to the processing time,
and if the network is a critical resource (in case images are on a
NAS). It consists in finding the appropriate order in which to pro-
cess the scene elements in order to load each image only once.
The algorithm is based on the visibility graph, where additional
information will be stored in each node (loaded or not for images,
processed or not for scene elements):

1. Select any scene element Ej in the scene as starting point of
the algorithm and add it to a set Sa of ”active elements”.

2. For each image Iji viewing Ej , load it and add the unpro-
cessed elements seen by Iji to Sa.

3. Process Ej , mark Ej as processed and remove it from Sa.

4. If an Iji has all its viewed elements processed, close it.

5. Select the element Ej with fewest unopened seeing images
in Sa.

6. While Sa is not empty, go back to 2.

7. If no unprocessed element remain, terminate.

8. Select an unprocessed element Ej and go back to 2,

This algorithm is quite simple to implement once the visibility
graph has been created, and will be evaluated in Section 4.

3.4 Sequence selection

Another useful utilization of the visibility graph is sequence se-
lection. In practice, we found out that images acquired by a mo-
bile acquisition device are often redundant, as the coverage of an
entire city require to traverse some streets more than once. Most
georeferencing devices use an inertial central allowing for very
precise relative localization but can derive due to GPS masks.
Hence redundant image sequences viewing the same scene el-
ement usually have a poor relative localization. Moreover, the
scene may have changed between two traversals: parked cars
gone, windows closed, shadows moved... In consequence, we
propose to cluster the set of images seeing a given scene element
according to their time of acquisition, then select the cluster (se-
quence) with the best quality (using the criteria of Section 3.1).

4 RESULTS AND DISCUSSION

We have developed the tools described in this paper in order to
perform large scale reconstruction and texture mapping of vari-
ous urban objects such as facades, trees,... However, this paper
only focuses on the optimized visibility computation, that is a
mandatory prerequisite for such applications. Consequently, the
results presented in this section consist mainly in statistics and
timings demonstrating the quality efficiency of our approach.

The method presented in this paper (rasterization) was evaluated
on a set of images acquired in a dense urban area with the mo-
bile mapping system of (Bentrah et al., 2004). The set consists

Figure 4: Visualization of the 5344 images used in our experi-
ments.
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Figure 5: Timings for visibility computation. Results are com-
pared between our rasterization approach (thick blue line) with
subsampling factors ranging from 1 to 24, and the three ap-
proaches of Bénitez (dotted lines).

of 334 vehicle positions, every 3 meters along a 1km path. For
each position, 16 images were acquired (12 images forming a
panoramic + 2 stereo pairs). We also disposed of a 3D city model
of the acquired area built from aerial imagery. Comparison with
the dataset of (Bénitez and Baillard, 2009) is displayed in Table
1. The main difference is that our path is shorter, but our im-
age density is much higher. The images acquired are represented
inserted in the 3D model on Fig. 4.

The timings for the computation of the visibility graph running
on an NVidia GeForce GTX 480 are presented on Fig. 5, along
with equivalent timings taken from (Bénitez and Baillard, 2009).
They are given with respect to the number of visibility queries
computed per image (number of rays traced or of buffer pixels).
A high number of rays ensures that most visibility relationships
will be found (good angular precision).

As expected, the use of the GPU allows for a huge performance
increase for 3D visibility computation, even though our results
are much more accurate: for an equivalent number of rays, our
rasterization approach is around 400 times faster than Z-buffering.
This huge performance increase is however limited to high ray
numbers, as decreasing the resolution of our rasterization does
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min max pix image/ mode max #image
area size wall footprint loads

0 ∞ 39.2 trv. 414 52085
opt. 1854 5058

1% (10cm)2 28.7 trv. 191 9644
opt. 521 3811

2% (4cm)2 20.1 trv. 120 5337
opt. 242 2886

5% (2cm)2 13.9 trv. 44 2665
opt. 51 1793

Table 2: Influence of geometric criteria on visibility graph den-
sity, and comparison of memory footprint and loading times be-
tween trivial (trv.) and optimized (opt.) processing.

not improve the computing time below 104 rays. Some steps of
the rendering pipeline have a computation time depending on the
number of primitives of the scene and not on the size of render-
ing, which explains the limit we reach (around 4.6ms per image)
for low resolutions. Even though our computing time does not
improve below 104 rays, it is still 20 times faster (for 160x90
rays) than 10x10 3D ray tracing.

The only method of (Bénitez and Baillard, 2009) with perfor-
mance comparable to ours is 2D ray tracing. In our sense, this
method is not suitable in urban areas in which configurations re-
quiring the third dimension are often encountered (such as a taller
building behind a smaller one). This is confirmed by (Bénitez and
Baillard, 2009) who found that 2D ray tracing misses one third of
the walls (compared to Z-buffering). Moreover, they state that
100 rays per image is a good compromise. For this number of
rays, 2D ray tracing is already slower than our rasterization.

Finally, our approach is clearly the only one allowing for pix-
elwise visibility computation in reasonable time (26ms per im-
age, rightmost point of Fig. 5). It can even be brought down to
20ms per image with the color counting acceleration described
in Section 3.1. This high performance makes pixelwise visibil-
ity image computation time of the same order of magnitude than
image loading time (15ms in our experiments), so the visibility
images can be computed on the fly when required instead of be-
ing precomputed and saved, which is another nice performance
improving feature of our approach.

Finally, we evaluated the optimized memory handling by creating
four visibility graphs of different densities by imposing increas-
ingly harsh geometric constraints (see Table 2). As expected, op-
timized processing greatly reduces the number of loads (each im-
age is loaded exactly once) at the cost of memory footprint (maxi-
mum number of images loaded simultaneously), and this effect is
more important on denser graphs. If memory size is a limit and/or
processing time is large compared to data loading time, then the
trivial approach should be used. In other cases, and especially if
data transfers are the bottleneck, then the optimized method will
be preferable. Table 2 also shows that harsher constraints reduces
the number of selected images, such that only the most pertinent
ones are preserved.

5 CONCLUSIONS AND FUTURE WORK

We have presented a methodology allowing easy scaling of recon-
struction and texture mapping methods on large areas. Comput-
ing the visibility graph of large scenes becomes tractable based on
our approach, even at the pixel level. Enriching 3D models based
on large amounts of data acquired at the ground level is becoming
a major application of mobile mapping, and we believe that this
methodology will prove useful to make the algorithms developed

in this context scalable. Our evaluation shows that our approach
outperforms previous works both in quality and computing time.

The method described in this paper is mostly useful for texture
mapping purposes where the per pixel visibility information is re-
quired in order to predict occlusion of the model by itself. How-
ever, it can also be used for unpredictable occlusions by insert-
ing a point cloud corresponding to detected occluders in the 3D
scene before rendering. But this method can also be used for any
reconstruction method where a rough estimate of the geometry
is known (bounding box, point cloud, 2D detection in aerial im-
ages,...)

In the future, we will look into optimizing our approach for larger
3D models based on spatial data structures such as octrees in or-
der to load only the parts of the model that are likely to be seen.
We will also investigate doing the color counting directly on the
GPU to avoid transferring the buffer from graphics memory to
RAM.
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