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ABSTRACT:

This paper proposes a method to estimate the local sharpness of an optical system through the wavelet-based analysis of a large set of
images it acquired. Assuming a space-invariant distribution of image features, such as in the aerial photography context, the proposed
approach produces a sharpness map of the imaging device over 16x16 pixels blocks that enables, for instance, the detection of optical
defects and the qualification of the mosaicking of multiple sensor images into a larger composite image. The proposed analysis is
based on accumulating of the edge maps corresponding to the first levels of the Haar Transform of each image of the dataset, following
the intuition that statistically, each pixel will see the same image structures. We propose a calibration method to transform these
accumulated edge maps into a sharpness map by approximating the local PSF (Point Spread Function) with a Gaussian blur.

1 INTRODUCTION

Characterizing the spatial resolution of an imaging system is an
important field of image processing and is used for assessing its
image quality and for restoration purposes.

This characterization can be obtained by shooting some perfectly
known objects, preferably periodic patterns such as Foucault res-
olution targets or Siemens stars (Fleury and Mathieu, 1956) to de-
duce the smallest periodic detail discernible by the system through
the determination of a Modular Transfer Function (MTF) (Becker
et al., 2007). This calibration technique is mainly used as a global
Point Spread Function (PSF) characterization of the imaging sys-
tem. However, some imaging systems (mounted with fisheye
lenses for instance) show a very space-dependent resolution. In
these circumstances, a local study is more suitable and can be
done by using a wall of targets, such as Siemens stars (Kedzier-
ski, 2008). Another calibration method consists in materializing
a punctual source by a laser beam in order to calculate the PSF
(Du and Voss, 2004). However, these approaches require that the
optical device go through a calibration procedure in a controlled
environment where the appropriate targets are displayed.

Conversely, some blind estimation methods were recently pre-
sented that use the edges present in an image. In the case of
airborne imagery, a mission over an urban area provides images
with a large amount of edges. Assuming a Gaussian PSF and
an equal distribution of edge orientations, (Luxen and Forstner,
2002) estimates the standard deviation of the Gaussian blur. An
alternative way of considering the problem is to study the image
frequencies by comparing the local spectrum (obtained after inte-
grating the Fourier Transform of a local patch in an image across
the polar coordinate theta) to the global image spectrum (Liu et
al., 2008). By varying the size of the patch used, one can choose a
compromise between the quality of the frequency estimation and
of the localization.

In an intermediate approach (Zhang and Bergholm, 1997) local
information (like edges) is considered at different scales using

differences of Gaussians. One interesting assessment is the be-
havior of edges according to the scale at which they are observed.
Sharp edges vanish at coarse scale whereas diffuse ones become
sharper when looked at coarser scales. An application proposed
by (Zhang and Bergholm, 1997) is blur estimation applied to de-
duce depth from focus. Multi-scale analysis is also an interesting
compromise between spatial and frequency accuracy. The use of
Haar wavelets in (Tong et al., 2004) is an interesting intermediate
solution. This is the framework that we investigate in this work.

The blind estimation methods cited above rely on a single image
so the blur caused by the optical system cannot be distinguished
from the smoothness of the imaged object itself. Our contribu-
tion is twofold: we overcomes this limitation by extending Tong’s
method (designed for a single image) to a large set of images, and
we propose a quantitative characterization of sharpness through a
blur radius.

2 OVERVIEW

Our method is based on Tong’s blur detection method that re-
lies itself on Haar wavelets. We will start by recapitulating his
approach, then explain the two contributions of our paper, and
finally expose the assumptions that we make on our datasets.

2.1 Haar wavelets

Tong’s method comes down to three main steps (Figure 1):

1. Do a 3 levels Haar wavelets transform.

2. Extract multi-scale normal edges mapsEnorm
l and maximal

edge maps Emax
l

3. Apply rules to these maps to estimate the sharpness.
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Figure 1: Haar wavelets transform and edge maps

The Haar decomposition of an image I is defined by:
LLl+1(i, j)
LHl+1(i, j)
HLl+1(i, j)
HHl+1(i, j)

 = MHaar


LLl(2i, 2j)

LLl(2i, 2j + 1)
LLl(2i+ 1, 2j)

LLl(2i+ 1, 2j + 1)


(1)

where L and H stand for Low and High frequencies, LL0 = I
and the Haar matrix is:

MHaar =
1

4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 (2)

For each level l = 1..3, an edge map is obtained by calculating
(for each pixel) the norm:

Enorm
l =

√
LH2

l +HL2
l +HH2

l (3)

TheEnorm
l do not have the same size, so Tong proposes to define

a maximal edge map Emax
l of constant size to make possible a

comparison between different levels:

Emax
l (i, j) =

24−l−1
max

di,dj=0
Enorm

l (24−li+ di, 24−lj + dj) (4)

thus all Emax
l are 24 = 16 times smaller than the input image.

The Emax
l measure the level of detail of the image at scale 2l on

16x16 pixels blocks. Tong et al. choose to apply rules based on
inequalities on theEmax

l in order to characterize qualitatively the
image sharpness.

2.2 Our approach

The novelty introduced in this paper compared to Tong’s approach
is twofold:

1. Compute an average Ēmax
l of the Emax

l over a large set of
images acquired with the same imaging system, such that
Ēmax

l characterize only the optical quality of the imaging
system itself. Obviously, Ēmax

l will also depend on the sta-
tistical properties of the set of images used.

2. Exploit the Ēmax
l to define a quantitative measure of the

local sharpness. We chose to quantify local sharpness by
assimilating the PSF to a Gaussian blur which radius (σ =
standard deviation) we will estimate. In other terms, we look
for σ as a function:

σ = σ(Ēmax
1 , Ēmax

2 , Ēmax
3 ) σ : R+3 → R (5)

The main idea developed in this paper is to look for σ(...) as the
composition of two functions:

σ = c(r(Ēmax
1 , Ēmax

2 , Ēmax
3 )) (6)

• r : R+3 → R is a space reduction function, which will re-
duce our problem from 3 to 1 dimensions. We will explain
what properties this function should have and propose a per-
tinent choice for this function in the next section.

• c : [0, 1]→ R is a monotonous calibration function linking
an r value to an actual blur radius σ. Because the Ēmax de-
pend on the actual statistical properties of the dataset used,
a calibration function c should be defined for each dataset.
Computation of this calibration function as well as its de-
pendence on image statistics is studied in the next section.

2.3 Assumptions

Characterizing an optical system based on a set of images that
it acquired will only be valid statistically if these images have
good statistical properties. In particular, the following assump-
tions should be made on the image dataset:

• Camera settings are constant for all the images.

• Shot objects must be in focus.

• Images should be shot without motion blur.

• The edge presence probability is uniform on the whole im-
age.

• The number of images should be large enough.
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Figure 2: Ēmax values for white noise images blurred by a Gaus-
sian of increasing radius.

All these assumptions are usually verified in the case of aerial im-
agery, provided that motion blur is corrected (by charge transfer
for instance), and that the area covered has sufficient texture and
edges (forest, city, ...) It is not the case for landscape photographs
where the edges are localized at the bottom of the images, and ob-
jects at various distances cannot all be in focus simultaneously.

3 BLUR ESTIMATION FROM EDGE MAPS

The aim of this section is to choose the space reduction function
r, and to propose a method to compute the calibration function c
from a dataset.

3.1 A first experiment

In order to make the exposition clearer, we will start by a sim-
ple experiment to exhibit the dependence of the Ēmax on blur.
The experiment consists in computing the Ēmax on a dataset of
white noise images (with a given standard deviation), blurred by a
Gaussian blur of known radius σ varying from 0 to 2 pixels (Fig.
2). It is easy to see that Ēmax depends linearly on the contrast,
so their absolute value do not convey a real meaning. Interest-
ingly,the Ēmax

1 and Ēmax
2 curves cross between 0.5 and 1, and

Ēmax
2 and Ēmax

3 cross between 1 and 2. This is quite natural as
Ēmax

1 , Ēmax
2 and Ēmax

3 corresponds to scales 1, 2 and 4 pixels
respectively, and a Gaussian of standard deviation σ is a structure
of size (diameter) 2σ. This is very coherent with the idea that
Ēmax

i exhibits certain scales in the image. Quite logically, the
curves are flat below σ = 0.5 pixels as structures of size lower
than 1 pixel are not representable, such that blurs of radii lower
than 0.5 are not discernible.

3.2 Space reduction function

The main interest of the space reduction function r is to make
calibration easier without loss of generality. In particular, we can
make r invariant to contrast by expressing it:

r(Ēmax
1 , Ēmax

2 , Ēmax
3 ) = s(E1, E2)

with E1 =
Ēmax

2

Ēmax
1

E2 =
Ēmax

3

Ēmax
2

(7)

The Ēmax ratios are displayed in Fig. 3 and show quite simi-
lar behavior but at a different scale. Thus we can simply choose
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Figure 3: Ratios of Ēmax values for white noise images.

the ratio corresponding to our scale of interest, or if we are in-
terested in multiple scales, average the corresponding ratios. If
scales larger than 4 pixels are of interest, then we can compute
more Ēmax

i+1 /Ē
max
i . In our case, we are interested in characteriz-

ing optical systems, that usually have blurs of radii smaller than
one pixel, such that we will simply choose:

r(Ēmax
1 , Ēmax

2 , Ēmax
3 ) = E1 =

Ēmax
2

Ēmax
1

(8)

3.3 Calibration function

As the function r is monotonous in σ in our experiment (except
for blur radii below 0.4 pixels that are indiscernible because they
reach the Shannon limit of the sensor), this relation ship can be
inversed to get σ as a function of r. This is exactly the definition
of our calibration function c. Consequently, if we had a ground
truth (a perfectly sharp image corresponding to each image ac-
quired by the optical system that we want to characterize), then
we could compute r(...) for these perfectly sharp images blurred
with various blur radii σ, and get our calibration function c as the
inverse of this function.

In order to compute calibration functions in real cases, we will
exploit the idea that the statistics of natural images are relatively
insensitive to scaling. More precisely, given a dataset of images
acquired with a given optical system, we will build a dataset of
perfectly sharp images by subsampling with a factor greater than
the largest expected blur (a factor 4 gives this guarantee in most
cases). We will assume that this dataset has statistical properties
close to those of the perfect dataset at full scale (that we cannot
have), and compute our calibration function on that subsampled
dataset.

The aim of the next subsection is to estimate the validity of the
assumption that we make in our approach that our datasets have
scale invariant statistical properties.

3.4 Sensitivity to scale

The statistical properties of natural images are complex and have
been widely studied. Some work seem to show that invariance
to scale is only true at lower scales (Huang and Mumford, 1999).
Moreover, the dataset that we use to estimate the blur of our opti-
cal system is composed of aerial images that have specific prop-
erties that might differ from those of natural images in general.
Thus we chose to test our assumption that r is relatively invari-
ant to scale, by a simple experiment: we evaluated the calibration
functions for an input dataset with various subsampling factors.
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Figure 4: Ratios of Ēmax values for subsampled aerial images.
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Figure 5: Ratios of Ēmax values for synthetic (dashed lines) and
real (solid lines) images.

The result of this experiment is displayed in Fig. 4. We see on
those curves that the error made by using the calibration function
at scale 4 instead of 16 will lead to an error around 0.1 pixel on
the blur radius estimation in our zone of interest (0.4 to 1 pixel).
This means that we can expect this precision when using the cali-
bration curve at scale 4 to approximate the (unknown) calibration
curve at scale 1. This is clearly a limitation to our approach as 0.1
pixel is a rather high error for blurs ranging from 0.4 to 1 pixel.
However, we can notice that except in the area below 0.4 pixels
where blur cannot be distinguished, the blur radii between differ-
ent scales are proportional. This means that even if the absolute
precision is poor, the relative precision is good, such that our ap-
proach is pertinent to locate flaws in the optical system as areas
where the blur radius increases. In other terms, the limitation on
the precision of the estimation will not impair the interpretation
of the result.

A last point of interest is to understand the influence of the image
dataset statistics on the calibration curve.

3.5 Sensitivity to image statistics

We have already built the calibration function for noise images
and for subsampled aerial images, which have rather different sta-
tistical properties. In particular, aerial images present structures
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Figure 6: Point spread function at one of the 9 points estimated
using a Siemens star.

at various different sizes whereas noise images have mostly struc-
tures of sizes close to a pixel. To complete the comparison, we
also built calibration functions for a second aerial image dataset,
another dataset coming from terrestrial mobile mapping, and a
set of synthetic images of packed Siemens stars. The results are
displayed in Fig. 5.

We first note that our two synthetic datasets (white noise and
Siemens stars) have the most extreme values, one displaying the
most irregular structures (white noise), and the other the most
regular (Siemens stars). The real datasets are between those ex-
tremes: terrestrial imagery in urban areas usually displays large
structures, so it is closer to the structured Siemens stars calibra-
tion function. Aerial image dataset are quite intermediate, and
show similar behavior except around 0.5 pixels. This probably
comes from the fact that the second dataset contains more forests
which brings more details at very low scales.

In conclusion, the calibration curves are close enough on real im-
ages to make visualization of the flaws of the imaging system
quite independent of the curve used. For this application, an ”av-
erage” calibration curve can be used, which saves a lot of compu-
tation time. Computing a calibration curve requires to subsample
each image of the dataset then compute the Emax over each sub-
sampled image, which roughly takes one hour for one thousand
images.

3.6 Comparison with blur estimation using Siemens stars

A classical approach to estimate the quality of an optical system
is to compute its Modulation Transfer Function (MTF). This can
be done by acquiring an image of a Siemens star, then estimat-
ing the contrast at various distances of the center (corresponding
to a spatial frequency) and in various directions (usually 4). The
first aerial dataset that we used contains such a Siemens star that
is visible in 9 images, so we applied this procedure to estimate
the MTF at 9 different points of the imaging system. The re-
sult for one of the points is displayed in Figure 6. We notice
that the curves in the various directions are very close, showing
isotropy. We estimated a blur radius from these curves for the
nine points by computing the contrast as a function of the blur
radius and inversing the relationship. The results are displayed
in Fig 7. As expected, the error is below 0.1 pixel, and the blur
radius is slightly exaggerated by our approach.
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Figure 7: Comparison with blur estimation using Siemens stars:
black crosses are at coordinate (σSiemens, r) where σSiemens is
the blur estimation with Siemens stars, and r = Ēmax
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is read at the Siemens star center using our approach. The dif-
ference between blur estimation using the two approaches is
given by horizontal distance from crosses to the calibration curve
(blue).

4 RESULTS AND DISCUSSION

Based on the proposed methodology, we are now able to build
blur radius maps, with the limitations quoted above, for any op-
tical system for which we have an image dataset satisfying the
assumptions of Section 2.3. We will now display the results of
this methodology applied to aerial and terrestrial imagery.

4.1 Experiment on aerial imagery

A first set of image is provided from an airborne photogrammet-
ric mission with a DMC. The results of our sharpness estimation
for these images are displayed in Figure 8. The small number of
images (157) for this mission is compensated by the large reso-
lution of the images (7680x13824) which is a mosaic of four in-
dividual panchromatic images. On these images, the top and the
bottom areas of the imaging system have a lesser resolution than
the center: this could be interpreted as an effect of the deforma-
tion (projection) applied to the four images during mosaicking.
The second visible artifact is the vertical line in the middle of the
figure: the decrease in sharpness in this part of the imaging sys-
tem may come from the seam between the left and right images.
We also notice that some small area (such as the one at the top
left) seem more blurry than the average: this might be interpreted
as flaw in (or a dust on) the lens or the sensor. Yet it should be
noticed that the blur radius is always less than a pixel.

4.2 Experiment on streetside imagery

A second experiment was led on streetside urban images obtained
by a camera mounted on a mobile vehicle. The distortion of the
camera was corrected prior to applying our method, so the sharp-
ness of the entire pipeline is estimated (Figure 9). One can notice
that the grid used for distortion correction is perfectly visible. The
sharper area at the bottom of the image is probably due to the fact
that our assumption on the homogeneity of edge distribution is
not verified as this part of the image always sees the road.

In conclusion, our approach allows us not only to evaluate the
quality of an optical system, but also to detect if the image under-
went alterations such as interpolations.

Figure 8: Sharpness image obtained through calibration for the
airborne experiment

5 CONCLUSION AND PERSPECTIVES

Our work aims at quantifying the amount of blur induced by an
optical system from a large set of images that it has acquired.
This is extremely useful in an operational context as it avoids
immobilizing an expensive resource (an aerial camera) in a lab to
perform its evaluation. It can also be used as a complement to lab
calibration as manipulations of the imaging system to transfer it
from the lab to the plane might slightly alter its characteristics.
Finally, we can think of another application of our method that
would be to evaluate the stability of the optical quality in time
during its utilization, enabling online certification of the imaging
system.

We have shown that our approach allows to build a sharpness
map of the imaging system, such that our sharpness estimation
is much denser than sparse approaches based on Siemens stars
for instance. We have shown that our estimation has an absolute
accuracy around 0.1 pixel (in blur radius) which is close to what
can be achieved based on MTF estimation. But more importantly,
we have a very good relative quality which allows for an easy
visual inspection of the localization of possible quality artifacts
in the image.

The method developed is targeted at a very limited blur radius
range of interest, but can be easily extended by using other ratios
for dimension reduction, and using more than 3 Haar levels.
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Figure 9: The sharpness estimate for streetside experiment ex-
hibits the grid used for the correction of the distortion
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