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ABSTRACT: 

A method for accurate depth measurement in depth from focus is presented. With depth from focus the 3D shape of objects can be
measured. To do so, an image series with different distances between camera and object is evaluated to extract focused parts.
Combining the results of an edge detection filter with the distance information at which the images have been acquired provides a
depth image of the object. The focus information is influenced by optical aberrations. Especially the curvature of field leads to a
significant error in the depth image. This error can be seen by measuring the depth information of a planar object with depth from
focus. The error in the depth image is approximated by fitting a second order surface to the depth image. To overcome the influence
of outliers in the depth image a robust least-squares fitting with suppression of outliers is used. The second order surface is then used
to correct depth images, which reduces the influence of the curvature of field on the depth data and leads to more accurate 3D
measurements.  

*  Corresponding author. 

1. INTRODUCTION 

The measurement of spatial geometric parameters of objects 
needs accurate methods to obtain the 3D shape of the object. 
There exist different methods to extract the 3D shape of an 
object. Often structured light, interferometrical techniques, or a 
stereo setup with two or more cameras are used. However all 
these methods require a complex and expensive setup. A simple 
setup uses one camera and applies the well known “depth from 
focus” (DFF) method to measure the 3D parameters of objects 
(Nayar, 1992; Nayar, 1994).  

The principle of DFF is the use of a lens system with a very 
short depth of field in combination with the evaluation of an 
image series, where every image is taken at a different camera-
object distance. Therefore, the advantage of DFF is the 
relatively simple setup. One just needs to take images at 
different distances to the object. The 3D shape information is 
then calculated from the image series by determining for every 
pixel the image in which the pixel is focused best. The result of 
the evaluation of the image series is a range image with the 
depth information of the object. This range image can be used 
to obtain further information about the object, e.g., the 
measurement of the volume of the object or the calculation of 
orientation information from the shape of the object. This 
requires accurate data in the range image. However, up to now 
the influence of optical aberrations has been neglected in the 
calculation of the range image. In this paper we propose a 
method to correct the effects of optical aberrations in order to 
get a more accurate range information. The proposed method 
can also be used in other ranging techniques, where depth 
information is obtained from focus measurements, e.g. in depth 
from defocus (Chaudhuri, 1998). 

2. EXPERIMENTAL SETUP 

A sketch of the experimental setup is shown in Figure 1.  

Figure 1: Schematic view of the setup (O: object, C: camera and
optics, F: framegrabber, I: image processing) 

The camera with the optical system (C) acquires images of the
object (O). The distance between the camera and the object is
variable. The camera is connected to a framegrabber (F) inside a 
standard computer. The image processing (I) is done in software
on a standard computer. The image processing and the DFF
algorithm are implemented in HALCON, the image processing
library from MVTec. 

The camera is a standard CCD camera with a resolution of
768x578 pixels. The optical system consists of a perspective
lens with 16 mm focal length and a depth of field of
approximately 0.4 mm. Using a perspective lens system may
cause problems in finding point-to-point correspondences
between the pixels of the images from different distances. 
Therefore often a telecentric lens system is used for DFF
applications to overcome the problem of perspective distortion
(Watanabe, 1995). The aperture of a telecentric lens is
positioned directly at its focal point. Hence, only parallel rays
are able to pass through this aperture and therefore a parallel 
projection of the object onto the CCD chip is achieved. In
practice, however, true telecentricity can never be obtained. 
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3. OPTICAL ABERRATIONS 

3.1 Motivation 

To demonstrate the influence of optical aberrations on the range 
information, we use a planar textured plate. The texture is 
necessary to get enough edge information for the DFF method. 
The plate is oriented parallel to the plane of the optical sensor. 
Examples for images of the plate at different distances are 
shown in Figure 2 and Figure 3. The part of the plate that is at 
the focus distance shows sharp edges, while all others parts are 
blurred. With the variation of the distance the sharp area moves 
over the surface of the object. 

Figure 2: Planar plate with the image center in focus 

Figure 3: Planar plate with the image border in focus 

In Figure 2 mainly the center part of the object is in focus, while 
border parts are blurred. In contrast, in Figure 3 the center part 
is blurred, while the border area is sharp. The effect that in an 
aligned setup even a planar object cannot be imaged completely 
sharp is an effect of the optical aberrations, in particular the 
curvature of field. 

3.2 Theory of Optical Aberrations 

There exist different types of optical aberration. A detailed 
description of the different types of aberration can be found in 
(Born, 1998). The main errors caused by aberrations are the 
following ones. Because of spherical aberration, light rays have 
different focus points depending on their distance to the optical 
axis. This kind of aberration causes a noticeable softness of the 
image. The coma is formed by an asymmetric accumulation of 

light intensity for off-axis points. It refers to the situation in
which rays from a single point in the focal plane, but passing
through opposite sides of the aperture, converge to different
points in the image. Coma appears in an image with comet-like
extension, affecting the periphery of the field of view. The
astigmatism is the separation of the tangential and sagittal focal 
surface. For example in the case of astigmatism horizontal lines
appear in focus and vertical lines out of focus, and vice versa.  

The distortion is the reason that straight lines that are off-axis
are imaged as curved lines. With distortion the image differs
geometrically from the object. The two types of distortion are
called barrel and pincushion distortion. For accurate 
measurements in images it is necessary to correct the effects of
distortions. With a suitable calibration, based on a pinhole 
camera model and the assumption of only radial distortion, this
effect can be corrected (Beyer, 1990; Gruen, 2001; Lanser,
1995). 

The curvature of field is the curvature of the tangential and
sagittal fields. This means that a planar object at right angles to
the axis of an optical system does not appear as a planar image. 
Therefore, one can focus around the center of the field, but the
periphery of the field will appear out of focus, or vice versa. 
This effect is the reason for the different sharp areas of Figure 2
and Figure 3. Figure 4 shows a ray diagram of the geometric 
representation for this effect.  

Figure 4: Ray diagram for the curvature of field 

A planar object is mapped on a non planar object. The distance
∆ε between the planar image and the non planar image depends
on the distance ∆y from the optical axis. It can be shown that  

2y∆∝∆ε           (1)

(Born, 1998). The curvature of field leads to different distances
where an object is focused, depending on the distance to the
optical axis. Therefore, the accuracy of the depth information in
DFF is limited by the curvature of field. 

4. DEPTH FROM FOCUS 

4.1 Principle 

The DFF algorithm calculates depth information from a series
of images. For every pixel in the image series, the maximum
response of an edge detection filter is calculated. As a result, for
every pixel the information in which image it is focused is
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returned. To show the result we can construct a completely 
sharp image of the object. For this we take for every pixel the 
gray value from the image where it is focused. Figure 5 shows 
the completely sharp image for the image series of Figure 2 and 
Figure 3.  

Figure 5: Constructed completely sharp image 

4.2 Depth Information

Another information that is available is the distance at which 
the image was captured. This can be combined with the 
information for the completely sharp image. The result is an 
image representing the depth information of the object. 
Different depths are represented by different gray values. The 
resulting depth image for the image series of Figure 2 and 
Figure 3 is shown in a pseudo 3D-plot in Figure 6. 

Figure 6: Depth image 

Different depths are displayed as different heights in Figure 6. 
At the border of the image we have a different depth compared 
to the center of the image. For a planar object perpendicular to 
the optical axis we would expect a constant depth. The different 
depths are the result of the curvature of field.  

4.3 Depth correction

When measuring a planar object vertical to the optical axis the 
resulting depth image is not a simple plane. It is a combination 
of a plane with a curved surface. The distance between the plane 

and the curved surface, caused by the curvature of field, can be
used for a correction of the depth.  
Using Figure 6 as an error image includes, albeit small, errors
from noise and other perturbations. Even though the object has
a smooth surface, the depth image is not perfectly smooth. To
achieve a more robust error image, it is useful to approximate 
the error image by a curved surface.  

A suitable approach is to fit a second order surface ∆ε(x,y):

,),( 22 feydxcxybyaxyx +++++=∆ε          (2)

where x and y are the pixel position in the error image and a to f
are the fitting parameters. The parameters a, b, and c are
responsible for the curvature, the parameters d and e are the
linear part in the x- and y- direction, and f is a constant offset.  

The fitting of the surface can be done with a least squares
method by minimizing the distance between the surface and the
error image. This means that the following function needs to be
minimized with respect to the parameters a, b, c, d, e, and f:
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ε is the sum over all pixels (x,y) of the squared distances ex,y

between the curved surface ∆ε and the measured depth image I.
The function ε is minimized if Dε = 0, where D are the partial 
derivatives of ε with respect to the parameters a to f (Haralick,
1992).This leads to an overdetermined set of linear equations of
the form Ax = b, which can be solved by standard numerical 
methods, e.g., the singular value decomposition (SVD).  

The standard least squares fitting yields good results as long as
there are no gross outliers in the depth image. Since the
calculated depth image will usually contain outliers, robust least
squares fitting procedures are necessary to suppress outliers in
the fitting procedure. To achieve this, the least squares function
is replaced by a new function for the distance between the
curved surface and the error image.  
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The new function ρ increases slower than the quadratic function
of the standard least squares minimization. Minimizing the new
function is again done by setting the partial derivatives to zero.
The result can be written again as a least squares problem with a 
weighting function: 
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The weighting function w is a function of the distance exy. The
calculation of the parameters is now done in an iterative
process. In every step the weighting function w is evaluated
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from the distances ex,y of the preceding step (k-1). The equation 
is solved, and a new set of parameters is calculated. This is done 
until the resulting error is smaller than a upper limit or a fixed 
number of iterations is reached. 

For the weighting function different approaches can be used. 
The approach of Tukey uses the following weighting function 
(Mosteller, 1977): 
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The clipping factor a controls the damping of outliers. It 
specifies, which distances are treated as outliers. Distances e
greater than the clipping factor are completely ignored.  

The approach of Huber treats outliers not as restrictive as Tukey 
(Huber, 1981). With the weighting function 
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outliers are not completely eliminated, but their contribution is 
damped. Outliers contribute only linearly instead of 
quadratically to the total error. 

From equations (5) and (7), using a clipping factor of twice the 
standard deviation, a more robust error image is obtained by 
evaluation of the curved surface at every pixel position in the 
error image. The calculated error image is shown in Figure 7. 

Figure 7: Calculated error image from the measured depth 
image 

For further measurements the depth at the position (x,y) can 
now be corrected with the value ∆ε(x,y).

5. RESULTS  

We have tested the proposed method by applying it to a variety 
of objects with different types of shapes. Figure 8 shows the 
depth image of a plane, which is not perpendicular to the optical 
axis.  

Figure 8: Depth image of a plane 

The depth image of the plane shows the plane with an overlay
from the curvature of field. The distortion generates a curved
surface in contrast to a planar surface as expected. The resulting
depth image after the correction with the error image from
Figure 7 is shown in Figure 9. As expected, the depth image
doesn't show a significant curvature anymore. 

Figure 9: Depth image of a plane after the correction 

Another example is shown in Figure 10, where the depth image
of a cylinder is displayed. 

Figure 10: Depth image of a cylinder 
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The deformation at the border leads to significant errors in the 
depth data. In contrast Figure 11 shows the depth image after 
the correction with the error image of Figure 7. 

Figure 11: Depth image of a cylinder after the correction 

The depth image shows the shape of a cylinder as expected. 

6. CONCLUSIONS 

Based on the DFF algorithm, we have developed a method to 
correct range errors caused by optical aberrations. An error 
image is calculated from an image series of a plane that is 
oriented perpendicular to the optical axis. The curvature of field 
is the type of aberration that is responsible for depth errors. The 
curvature of field is determined by fitting a second order surface 
to the error image using a robust least-squares fit with outlier 
suppression. The depth information to be measured can then be 
corrected with this second order surface, leading to a 
significantly more accurate depth information.  
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