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ABSTRACT 

This paper describes a purely geometrical approach for matching and chaining edgels, i.e. contours points with their tangent direction,
to reconstruct in a general way 3D rectilinear or curved surface boundaries from multiple calibrated images. Results show that the
3D reconstructed edgels are highly reliable and accurate, and correctly reproduce the 3D limits of very small image structures thus
demonstrating the high resolving power of this technique and enabling a finer description and understanding of urban scenes. 3D
Edgels are a key feature for reconstructing man-made objects. Practical examples of edgels reconstruction are given on various type of
3D objects (roundabouts, zebra crossings, cars, classical and odd shape buildings, dormer windows) in surveys at a ground pixel size of
25 cm. Practical examples of edgels integration within a surface reconstruction or 3D pattern recognition and object extraction processes
are also provided. Indeed 3D edgels can be used as characteristic and constraining lines for the surface topography reconstruction and
used to build the limits of cartographic objects thus ensuring a natural geometrical and topological coherence between Digital Surface
Models and Digital Object Models. 

1 INTRODUCTION 

Feature-based matching techniques from stereopairs to reconstruct 
linear features corresponding to surface radiometric or ge-

ometric changes have been a very largely investigated subject 
within the computer vision and the photogrammetric communi-
ties in the three last decades (Medioni and Nevatia, 1985),(Serra 
and Berthod, 1995), (Baillard and Maitre, 1999). Indeed, surfaces 
reconstructed by purely area-based stereo-matching techniques 
do not render correctly the localisation and the morphology of 
surface changes and 3D objects (e.g. building discontinuities or 
slope breaks). Surface models and 3D objects can only be coher-
ent if the 3D object limits or their corresponding image features 
are injected in some way in the surface reconstruction scheme. 

Matching features within stereopairs is a geometrical incorrectly 
posed problem. Indeed, contour and segment features themselves 
are not stable i.e. they are not characterised in the same way in 
both images (e.g. due to occlusions). Moreover, any couple of 
image contours (resp. segments) could generate a 3D point (resp. 
segment) by intersection of their 3D corresponding lines (resp. 
planes) in object space. A way of reducing geometrical ambi-
guities is to search for invariant-based matching attributes (given 
an analysis area around the feature). These parameters are usu-
ally not very stable within urban areas due to non lambertian re-
flectance of surfaces and inversion contrast. And even when they 
are stable, considering the fact that these attributes are calculated 
on a neighbourhood, problems can occur when objects are small 
and features are close to one another and thus inevitably reduces 
the resolving power of the matching algorithm. 

The acquisition of multiple views solves many of these problems. 
Actually, provided a sufficient overlapping exists, there will most 
of the time be more than two images among the set of images 
in which a relevant feature of the landscape is characterised in a 
similar way. Having a high redundancy of geometrically differ-
ent feature observations will increase the reliability, the accuracy 

and especially the resolving power of the reconstruction algo-
rithm due to the fact the pure intrinsic geometrical information
within the feature will be sufficient to match it. 

Recent papers have shown that multiple views simplify and im-
prove considerably the reconstruction of 3D segments (Noronha
and Nevatia, 1997), (Heuel and Förstner, 2001), (Taillandier and
Deriche, 2002). Although results shown in these papers are im-
pressive they are not adapted for reconstructing small structures
(in general smaller than 10 pixels in image space). In addition,
even though 3D segments can describe efficiently a very large
number of man-made structures many other man-made objects -
which should appear in 3D city models or traditionnal high scale
cartographic databases- have curved boundary limits: roundabouts,
pavements, and more and more buildings with the new standards
and fashions of architecture which are in general very compli-
cated and time consuming to stereoplot by a manual operator in
comparison with classical buildings. 

We will thus present an edgel matching technique suited to recon-
struct both straight and curved linear object boundaries. An edgel
is an elementary point of contour (maxima of intensity gradients)
with its related tangent direction. 

2 EXTRACTING 2D EDGELS FROM IMAGES 

Contours within each image of the set are detected by apply-
ing the Canny-Deriche edge detector and by extracting the local
maxima in the gradient images. The local maxima are then lo-
cated with sub-pixel accuracy by determining the peak value of
the parabola that fits locally the gradient samples in the gradient
direction. The sub-pixel contour points are thereafter chained and
the 2D tangent direction for each contour point is calculated by
fitting a straight line on the few closest chain samples on each
side of it. This estimation can be sensitive to noise, change of
direction, etc. thus, in order to get a robust estimation of the as-
sociated direction, we use an M-estimator (Rousseeuw and Leroy,
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1987). We thus obtain chains of edgels: points with tangent di-
rection. We now want to match each 2D edgel with the � � ��
other images. 

IDENTIFYING EDGEL-MATCHING HYPOTHESES 
IN SLAVE IMAGES THROUGH OBJECT SPACE 

First we choose a master image. For each edgel point � �� in this 
master image, we determine the corresponding bundle in object 
space (Figure 1). Having previously corrected the chains of con-
tours of the image distortion, the epipolar curves i.e. the projec-
tion of the master bundle in all slave images, are straight lines. 
Thus the set of homologous 2D edgels hypotheses englobes all 
the 2D edgel segments intersecting the epipolar lines. A quadtree 
search is performed to reduce efficiently the combinatory of the 
hypotheses determination. The 3D object space edgel point ��
corresponding to � �� is determined by an adjustment of all the bun-
dles corresponding to all the set of hypotheses as explained in the 
following paragraph. 
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Figure 1: The master point � �� is reprojected in every slave im-
age using an epipolar constraint and a bound on the altitude� � 	� 
 � �  � 
 � � � �� . Image �� contains a set � �� of possible matches 
with � �� .

ROBUST 3D EDGEL ESTIMATION (POINT 
LOCATION WITH TANGENT DIRECTION) 

The first step of our adjustment aims at finding a point matching 
algorithm related to the master point � �� . During this step, we use 
a RANSAC technique in order to select the best cluster of bun-
dles close to the master bundle. The matching is described by 
the master point � �� , the set of associated slave points and a 3D 
location �� . Each slave image contains at most one slave point. It 
is important to notice that we do not systematically find a match-
ing for each slave image. First, we reject a matching candidate 
as soon as the distance between the bundle and �� is larger than 
a given threshold. This threshold is only a function of the var-
ious ��� parameters. Second, the whole matching is rejected as 
soon as it contains a poor number of points. The lower bound 
on the number of points depends on the robustness required by 
the application (in our application, we kept matchings contain-
ing at least four points). More details can be found in (Jung et 
al., 2002). Practically, we minimize the third residual. Bundles 
having a distance larger than the altimetric resolution (in our case

� �� ) are automatically rejected. Our evaluation procedure (see 
next section) proved that this threshold was meaningful. 

After the RANSAC location adjustment, we suppose that the re-
maining measures follow a gaussian error. Hence, it is now pos-
sible to refine the 3D location by a least square technique. After
this step, the importance of the master bundle is reduced and we
get a precise location �� associated to our matching. 

To estimate a 3D tangent direction associated to �� , we tailored a
direction adjustment. The aim is to find a 3D direction as close as
possible to every plane formed by a matching point, the associ-
ated 2D direction and the projection center of the associated cam-
era. Intersecting all these planes two by two gives us a set of hy-
pothesis for the 3D direction (Figure 2). We first use a RANSAC
technique to get a robust estimation of the direction. We reject all
measures that are to far from our solution. The threshold should
only depend on the accuracy of the 2D edgels and on the geome-
try of the different point locations. A threshold of � � �� was fixed
in our applications. The accuracy evaluation performed were able
to confirm us that this threshold was meaninful. 

Then a least square technique is used considering the directions
close to the RANSAC solution. 
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Figure 2: Direction Adjustment. The RANSAC step aims at elim-
inating outliers. The second step consists of a � �� etimation in
order to refine the direction. 

We have separated the location adjustment from the directional
adjustment. Because the location residuals are metric, while the
directional residuals are angular, it is hard to compare these quan-
tities. Besides, considering simultaneously position and direction
estimation stays challenging due to the large number of potential
matches to compare with a robust technique. 

As soon as all master image edge locations are processed, we re-
peat the very same algorithm choosing a master image from the
remaining set of images. This enables the detection of 3D edgels
not significantly detected in the previously processed master im-
ages. Moreover, seeing that the object sampling changes in each
view, repeating the process master images and accumulating the
3D edgels allows a super resolution object characterization. 

Many applications take advantage of the use of robust external
surface data : robust DSM computed by correlation techniques
(Paparoditis et al., 2001), laser scanning surface, etc. Using a
photogrammetric or a LASER DSM in our process reduces dras-
tically the matching search-space combinatory and consequently
the matching ambiguities and erroneous edgel features. 

Having removed most of the erroneous matches, it is possible
to associate a geometric uncertainty to each reconstructed fea-
ture using Förstner and Heuel’s technique of uncertainty propa-
gation (Heuel and Förstner, 2001). This enables a thresholdless
grouping and chaining of our low-level 3D features to reconstruct
higher-level features and objects. 

3D
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5 3D EDGEL GROUPING 

Our algorithm provides a 3D description of an entire scene using 
edgels. Due to the extraction process, it is easy and natural to 
group these edgels using the 2 edgels topology. This algorithm 
proceeds in two steps: first, a refinement of the edgel position is 
performed, second a polygonal approximation is performed. 

5.1 Edgel refinement 

Using as many master images as available, we will finally get a 
redundant description of our scene. All these descriptions are not 
independant but they complete one each other. Thus, we use this 
redundancy in order to refine our description of the scene. To 
each 3D edgel we associate the master 2 edgel � �� used for the 
former descibed adjustment technique. We associate a new 3D 
edgel using a RANSAC technique in order to compute a new 3D 
line thanks to all the 3D neighboring edgels (Figure 3). More pre-

Figure 3: We estimate a 3D line candidate minimising the dis-
tance to the neighbors edgels using a RANSAC algorithm. The 
dashed line represents the solution choosen by our algorithm. 

We now associate a new 3D edgel �� to (Figure 4). It is im-
portant to notice that �� does not necessarily belong to the bundle 

5.2 Polygonal approximation 

Using the chain structure of the 2 edgels contours in each im-
age, we will be able to compute a polygonal approximation 
with a classical Ramer-Douglas-Peucker algorithm. We are us-
ing a 2 threshold �� � �� and an altimetric threshold of � �� �� in
order to readjust the location without changing the edgel orienta-
tion. Hence, we get a set of 3D edgels chains. We recursively cut 
in two pieces every chain as soon as the distance of two consec-
utive 3D edgels inside the chain is bigger than twice the image 
resolution. We must notice that this threshold is not critical for 
our applications (Figure 5). 

Figure 4: To each 2 edgel, we associate a refined edgel.
We take advantage of the chains of 2 edgel in order to provide
a chaining of edges. 

The descibed algorithm is simple and easy to implement. Nev-
ertheless, there remains some major drawbacks associated to this
technique. First, we do not necessarily get a unique description
of the contours. A matching ot the different chains describing the
same contour has still to be performed. This task can be very
tricky but is not absolutely necessary for many scene interpreta-
tion tasks. 
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cisely, we select the 3D line D  (which supports an edgel) which
minimize  a given residual of the  distance of the set of edgels to
D. In order to compute D we use all 3D edgel associated to every
master  image.  If we get to few  edgels inside our bounding box,
we stop the refinment process for that given edgel.
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6 RESULTS 

Figure 5: Example of a 3D polygon approximation based on a set 
� �

of 3D edgels. The upper figure represents the results of our 
extraction algorithm. The bottom figure provides the result of our 
chaining algorithm. 

First, we must note that some general accuracy and detection
evaluation experiments can be found in (Jung et al., 2002). In
this section we illustrate the resolving power of our 3D edgels,
first on synthetic data (Figure 6) and then on real data (Figure 7,
8). We can notice that very small objects (five to twenty image
pixels) are well described. This makes us believe that 3D edgels
are well suited for 3D object recognition tasks. 

Figure 6: Example of 3D edgels of a dormer window reconstruc-
tion using edgels. The dormer window is composed by edges of
size 10 to 15 pixels. The two upper images represent two of the 9
synthetic images used to extract the edgels. 

Second, curved objects are well described (Figure 9). As a mat-
ter of fact, modern architecture provides numerous examples of
very complex buildings which can not be modelized by straight
lines. Urban areas will contain more and more of these curved

� �
shaped buildings. Automatic building recontruction schemes
will have to integrate non-straight elements in order to reach a
higher automatic performance. 

Third, we give an example of application using 3D edgels in or-
der to estimate an accurate 3D surface model (Figure 10). We
performed a  2D constrained Delaunay tesselation (using the x
and y coordinates of our 3D  edgels)in order to get a description

� �
of a scene with triangles. We used some prior information
concerning concerning the DTM in order to get a smoth ground
surface. These information can be provided by a ground/above
ground classification like in (Baillard and Maitre, 1999). 
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� �
Figure 7: Example of car description using edgels. We can 
notice that the main structure of all static cars are well described. 
Pixel size : 25cm. The image length of a car is approximately � �� Figure 9: Example of 3D edgel extraction and chaining. Curved
to � �� pixels. objects are well described. 

Figure 8: Example of non-linear object extraction with edgels. 
The shape of small objects (cars, zebra crossing, etc.) are well 
reconstructed using edgels. The square (upper left and bottom Figure 10: Example of a 3D surface reconstruction using edgels.
left images) is used as a 1   x 1m metric reference.� We computed a 2D Delaunay tesselation combined to prior in-

formation of the DTM. 
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7 FUTURE WORK AND CONCLUSION 

We have presented a technique to extract in 3D the smallest sig-
nificant features within the images. Indeed the outputs of such 
a reconstruction is extremely rich but the information is rather 
complete and just needs to be sorted. The features reconstructed 
are robust, accurate (Jung et al., 2002) and the features come with 
their geometric uncertainty estimation. The quality of the recon-
struction is also to put onto the account of the digital frame cam-
era (Thom and Souchon, 2001) used for the surveys which has a 
very high Signal to Noise Ratio thus guaranteeing accurate tan-
gent directions. 

As presented in the paper these features can have many applica-
tions in an cartographic context. These features with their geo-
metric uncertainty can also be combined in order to build higher 
level information (Heuel and Förstner, 2001): e.g. to reconstruct 
planar faces of buildings by grouping 3D edgels with or without 
the help of other features e.g. 3D points provided by a multi-view 
template matcher (Paparoditis et al., 2001). 3D Edgels can also 
be injected as such as an input into 3D pattern recognition ex-
perts: e.g. car experts, zebra-crossing experts, etc. all to draw 
evidence of roads. Indeed, many pattern recognition algorithms 
(neural networks, decision trees, etc.) just need a ”recoded” input 
image in order to take a decision. All these experts will partici-
pate in a holistic approach to a better general understanding and 
splitting of the scene in elementary mono-thematic focusing areas 
(Paparoditis et al., 2001): e.g. ground, roads, pavements, trees, 
vegetation, buildings, upon which object reconstruction experts 
will be applied. 
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