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ABSTRACT: 
 
Light Detection and Ranging (LIDAR) systems have become a standard data collection technology for capturing object surface 
information and 3D modeling of urban areas. Although, LIDAR systems provide detailed valuable geometric information, they still 
require extensive interpretation of their data for object extraction and recognition to make it practical for mapping purposes. A 
fundamental step in the transformation of the LIDAR data into objects is the segmentation of LIDAR data through a clustering 
process. Nevertheless, due to scene complexity and the variety of objects in urban areas, e.g. buildings, roads, and trees, clustering 
using only one single cue will not reach meaningful results. The multi dimensionality nature of LIDAR data, e.g. laser range and 
intensity information in both first and last echo, allow the use of more information in the data clustering process and ultimately into 
the reconstruction scheme. Multi dimensionality nature of LIDAR data with a dense sampling interval in urban applications, provide 
a huge amount of valuable information.  However, this amount of information produces a lot of problems for traditional clustering 
techniques. This paper describes the potential of an artificial swarm bee colony optimization algorithm to find global solutions to the 
clustering problem of multi dimensional LIDAR data in urban areas. The artificial bee colony algorithm performs neighborhood 
search combined with random search in a way that is reminiscent of the food foraging behavior of swarms of honey bees. Hence, by 
integrating the simplicity of the k-means algorithm with the capability of the artificial bee colony algorithm, a robust and efficient 
clustering method for object extraction from LIDAR data is presented in this paper. This algorithm successfully applied to different 
LIDAR data sets in different urban areas with different size and complexities.  
 
 
 

1. INTRODUCTION 

The need for rapidly generating high-density digital elevation 
data for areas of considerable spatial extent has been one of the 
main motives for the development of commercial airborne laser 
scanning systems. During the last decade, several clustering and 
filtering techniques have been developed for the extraction of 
3D objects for city modelling applications or removing the 
“artefacts” of bare terrain (i.e. Buildings and trees) in order to 
obtain the true Digital Elevation Model (Filin and Pfeifer; 2006; 
Kraus and Pfeifer, 1998; Lodha et al., 2007; Rottensteiner and 
Briese, 2002; Tóvári and Vögtle, 2004). 

However due to low information content and resolution of 
available commercial LIDAR scanners, it is difficult to 
correctly recognize and remove 3D objects exclusively from 
LIDAR range data in urban areas (Maas, 2001; Samadzadegan, 
2004; Tao and Hu, 2001; Vosselman et al., 2004).  

In order to improve the performance of 3D object extraction 
process, additional data should be considered. Most LIDAR 
systems register, at least, two echoes of the laser beam, the first 
and the last echo, which generally correspond to the highest and 
the lowest object point hit by the laser beam. First and last echo 
data will especially differ in the presence of vegetation (Kraus, 
2002). Moreover, LIDAR systems record the intensity of the 
returned laser beam which is mainly in the infrared part of the 
electromagnetic spectrum. In addition, an extra powerful source 
of information is visible image. Digital images can provide 
additional information through their intensity and spectral 
content as well as their high spatial resolution which is better 
than the resolution of laser scanner data.  

Therefore, in the context of 3D object extraction in urban 
areas, various type of information can be fused to overcome 
the difficulties of classification and identification of 
complicated objects (Lim and Suter, 2007; Vosselman et al., 
2004). Collecting this information, extremely enlarge the size 
of data sets and proportionally the dimension of feature spaces 
in clustering process. As a result, most of traditional clustering 
techniques that have been applied with standard data and low 
feature space dimension are not efficient enough for object 
extraction process from LIDAR data (Melzer, 2007; Lodha et 
al., 2007).  

k-means is one of the most popular clustering algorithms for 
handling massive datasets. The algorithm is efficient at 
clustering large data sets because its computational 
complexity only grows linearly with the number of data points 
(Kotsiantis and Pintelas, 2004). However, the algorithm may 
converge to solutions that are not optimal. This paper presents 
an artificial bee colony (ABC) clustering algorithm for 
overcoming the existing problems of traditional k-means. 
 
 

2. BASIC CONCEPTS IN DATA CLUSTERING  

Historically, the notion of finding useful patterns in data has 
been given a variety of names including data clustering, data 
mining, knowledge discovery, pattern recognition, information 
extraction, etc (Ajith et al., 2006). Data clustering is an 
analytic process designed to explore data by discovering of 
consistent patterns and/or systematic relationships between 
variables, and then to validate the findings by applying the 
detected patterns to new subsets of data.  
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Data clustering is a difficult problem in unsupervised pattern 
recognition as the clusters in data may have different shapes and 
sizes. In the background of clustering techniques, the following 
terms are used in this paper (Jain et al., 1999): 
 A pattern (or feature vector), z, is a single object or data 

point used by the clustering algorithm. 
 A feature (attribute) is an individual component of a 

pattern. 
 A cluster is a set of similar patterns, and patterns from 

different clusters are not similar. 
  A distance measure is a metric used to evaluate the 

similarity of patterns. 

The clustering problem can be formally defined as follows (Jain 
et al., 1999): Given a data set Z={z1,z2, . . . ,zp, . . . ,zNp} where zp 
is a pattern in the Nd-dimensional feature space, and Np is the 
number of patterns in Z, then the clustering of Z is the 
partitioning of Z into K clusters {C1,C2, . . . ,CK} satisfying the 
following conditions: 
 Each pattern should be assigned to a cluster, i.e. 

ୀଵ
 ܥ ൌ ܼ  

 Each cluster has at least one pattern assigned to it, i.e. 
ܥ ് 0, ݇ ൌ 1, … ,  ܭ

 Each pattern is assigned to one and only one cluster  
ܥ ת ܥ ൌ 0, ݇ ݁ݎ݄݁ݓ ് ݆ 

As previously mentioned, clustering is the process of 
identifying natural groupings or clusters within 
multidimensional data based on feature space through similarity 
measure. Hence, similarity measures are fundamental 
components in most clustering algorithms (Jain et al., 1999). 
The most popular way to evaluate a similarity measure is the 
use of distance measures. The most widely used distance 
measure is the Euclidean distance, defined as: 

݀൫ݖ, ൯ݖ ൌ ට∑ ൫ݖ, െ ,൯ݖ
ଶே

ୀଵ ൌ ฮݖିݖฮ
ଶ
                (1) 

Generally, clustering algorithms can be categorized into 
partitioning methods, hierarchical methods, density-based 
methods, grid-based methods, and model-based methods. An 
excellent survey of clustering techniques can be found in 
(Kotsiantis and Pintelas, 2004). In this paper, the focus will be 
on the partitional clustering algorithms. Partitional clustering 
algorithms divide the data set into a specified number of 
clusters and then evaluate them by some criteria. These 
algorithms try to minimize certain criteria (e.g. a square error 
function) and can therefore be treated as optimization problems 
(Harvey et al., 2002; Omran et al., 2005; Wilson et al., 2002).  

The most widely used partitional algorithm in clustering 
techniques is the iterative k-means approach (Kotsiantis and 
Pintelas, 2004). The objective function J that the k-means 
optimizes is: 

ି௦ܬ ൌ ∑ ∑ ݀ଶ
ೖא௭


ୀଵ ൫ݖ, ݉൯                            (2) 

Where mk is the centroid of the k-th cluster. The membership 
and weight functions u for k-means are defined as: 

൯ݖ|൫݉ݑ ൌ ൜1         ݂݅ ݀ଶ൫ݖ, ݉൯ ൌ arg ݉݅݊൛݀ଶ൫ݖ, ݉൯ൟ
݁ݏ݅ݓݎ݄݁ݐ                                                             0

             (3) 

Consequently, the k-means method minimizes the intra-cluster 
distance. The k-means algorithm starts with k centroids (initial 
values are randomly selected or derived from a priori 
information). Then, each pattern zp in the data set is assigned to 
the closest cluster (i.e. closest centroid). Finally, the centroids 

are recalculated according to the associated patterns. This 
procedure is repeated until convergence is achieved. 

It is known that the k-means algorithm may reach local 
optimal solutions, depending on the choice of the initial 
cluster centres. Genetic algorithms have a potentially greater 
ability to avoid local optima through the localised search 
employed by most clustering techniques. Maulik and 
Bandyopadhyay (2004) proposed a genetic algorithm-based 
clustering technique, called GA-clustering, that proven to be 
effective in optimal clusters. With this algorithm, solutions 
(typically, cluster centroids) are represented by bit strings. The 
search for an appropriate solution begins with a population, or 
collection, of initial solutions. Members of the current 
population are used to create the next generation population 
by applying operations such as random mutation and 
crossover. At each step, the solutions in the current population 
are evaluated relative to some measures of fitness (which, 
typically, is inversely proportional to d), with the fittest 
solutions selected probabilistically as seeds for producing the 
next generation. The process performs a generate-and-test 
beam search of the solution space, in which variants of the 
best current solutions are most likely to be considered next. In 
the next section, an alternative clustering method to solve the 
local optimum problem of the k-means algorithm is described. 
The applied method adopts the artificial swarm bees algorithm 
as it has proved to give a more robust performance than other 
intelligent optimisation methods for a range of complex 
problems (Pham, 2006). 

3. CLUSTERING OF LIDAR DATA USING SWARM 
ARTIFICIAL BEE COLONY ALGORITHM 

Swarm Intelligence (SI) is an innovative distributed intelligent 
paradigm for solving optimization problems that originally 
took its inspiration from the biological examples by swarming, 
flocking and herding phenomena. These techniques 
incorporate swarming behaviours observed in flocks of birds, 
schools of fish, or swarms of bees, and even human social 
behaviour, from which the idea is emerged (Omran et al., 
2002, 2005; Paterlini and Krink, 2005;  Pham et al., 2006; Wu 
and Shi, 2001). Data clustering and swarm intelligence may 
seem that they do not have many properties in common. 
However, recent studies suggest that they can be used together 
for several real world data clustering and mining problems 
especially when other methods would be too expensive or 
difficult to implement. 

Clustering approaches inspired by the collective behaviours of 
ants have been proposed by Wu and Shi (2001), Labroche et 
al. (2001). The main idea of these approaches is that artificial 
ants are used to pick up items and drop them near similar 
items resulting in the formation of clusters. Omran et al. 
(2002) proposed particle swarm optimization (PSO) clustering 
algorithm. The results of Omran et al. (2002, 2005) show that 
PSO outperformed k-means, fuzzy c-means (FCM) and other 
state-of-the-art clustering algorithms. More recently, Paterlini 
and Krink (2005) compared the performance of k-means, 
genetic algorithm (GA), PSO and Differential Evolution (DE) 
for a representative point evaluation approach to partitional 
clustering. The results show that GAs, PSO and DE 
outperformed the k-means algorithm. Pham et al. (2006) used 
the artificial bee colony algorithm for clustering of different 
data sets. The obtained results of their work show that their 
proposed artificial bee colony algorithm has better 
performance than both of standard k-means as well as GA-
based method. In general, the literature review of recent 
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techniques in clustering shows that the swarm-based clustering 
algorithm performs better than the k-means algorithm. 
Clustering of massive LIDAR data and the unique potential of 
artificial bee colony algorithm in solving complex optimization 
problems are the core of this paper. The research work 
presented in this paper clearly show that the artificial swarm bee 
colony algorithm has clearly outperform k-means method in 
clustering of LIDAR data. 

3.1 Artificial Bee Colony Algorithm 

A colony of honey bees can extend itself over long distances in 
order to exploit a large number of food sources (Camazine et 
al., 2003; Pham et al., 2006) . The foraging process begins in a 
colony by scout bees being sent to search for promising flower 
patches. Flower patches with large amounts of nectar or pollen 
that can be collected with less effort tend to be visited by more 
bees, whereas patches with less nectar or pollen receive fewer 
bees (Camazine et al., 2003). 

 In the artificial bee algorithms, a food source position 
represents a possible solution to the problem to be optimized. 
Therefore, at the initialization step, a set of food source 
positions are randomly produced and also the values of control 
parameters of the algorithm are assigned. The nectar mount of a 
food source corresponds to the quality of the solution 
represented by that source. So the nectar amounts of the food 
sources existing at the initial positions are determined. In other 
words, the quality values of the initial solutions are calculated.  

Each employed bee is moved onto her food source area for 
determining a new food source within the neighbourhood of the 
present one, and then its nectar amount is evaluated. If the 
nectar amount of the new one is higher, then the bee forgets the 
previous one and memorizes the new one. After the employed 
bees complete their search, they come back into the hive and 
share their information about the nectar amounts of their 
sources with the onlookers waiting on the dance area. All 
onlookers successively determine a food source area with a 
probability based on their nectar amounts. If the nectar amount 
of a food source is much higher when compared with other food 
sources, it means that this source will be chosen by most of the 
onlookers. This process is similar to the natural selection 
process in evolutionary algorithms. Each onlooker determines a 
neighbour food source within the neighbourhood of the one to 
which she has been assigned and then its nectar amount is 
evaluated. 
 
3.2 Artificial Swarm Bee Colony Clustering Method 

The artificial swarm bee colony clustering method exploits the 
search capability of the Bees Algorithm to overcome the local 
optimum problem of the k-means algorithm. More specifically, 
the task is to search for appropriate cluster centres (c1, c2,...,ck) 
such that the clustering metric d (equation 1) is minimised. The 
basic steps of this clustering operation are: 

1. Initialise the solution population. 
2. Evaluate the fitness of the population. 
3. While (stopping criterion is not met)  

a. Form new population. 
b. Select sites for neighbourhood search by means of 

information in the neighbourhood of the present one. 
c. Recruit bees for selected sites (more bees for the best 

e sites) and evaluate fitness values. 
d. Select the fittest bee from each site. 
e. Assign remaining bees to search randomly and 

evaluate their fitness values. 
End While. 

Each bee represents a potential clustering solution as set of k 
cluster centres and each site represent the patterns or data 
objects. The algorithm requires some parameters to be set, 
namely: number of scout bees (n), number of sites selected for 
neighbourhood searching (m), number of top-rated (elite) sites 
among m selected sites (e), number of bees recruited for the 
best e sites (nep), number of bees recruited for the other (me) 
selected sites (nsp), and the stopping criterion for the loop. 

At the initialization stage, a set of scout bee population (n) are 
randomly selected to define the k clusters. The Euclidean 
distances between each data pattern and all centres are 
calculated to determine the cluster to which the data pattern 
belongs. In this way, initial clusters can be constructed. After 
the clusters have been formed, the original cluster centres are 
replaced by the actual centroids of the clusters to define a 
particular clustering solution (i.e. a bee). This initialization 
process is applied each time new bees are to be created. 

 In step 2, the fitness computation process is carried out for 
each site visited by a bee by calculating the clustering metric d 
(equation 1) which is inversely related to fitness. Step 3, is the 
main step of bee colony optimization, which start by forming 
new population (step 3-a). In step 3-b, the m sites with the 
highest fitness are designated as “selected sites” and chosen 
for neighbourhood search. In steps 3-c and 3-d, the algorithm 
conducts searches around the selected sites, assigning more 
bees to search in the vicinity of the best e sites. Selection of 
the best sites can be made directly according to the fitness 
associated with them. Alternatively, the fitness values are used 
to determine the probability of the sites being selected. 
Searches in the neighbourhood of the best e sites - those which 
represent the most promising solutions - are made more 
detailed. As already mentioned, this is done by recruiting 
more bees for the best e sites than for the other selected sites. 
Together with scouting, this differential recruitment is a key 
operation of the bee algorithm. In step 3-d, only the bee that 
has found the site with the highest fitness (the “fittest” bee) 
will be selected to form part of the next bee population. In 
nature, there is no such a restriction. This restriction is 
introduced here to reduce the number of points to be explored. 
In step 3-e, the remaining bees in the population are assigned 
randomly around the search space to scout for new potential 
solutions. At the end of each loop, the colony will have two 
stages to its new population: representatives from the selected 
sites, and scout bees assigned to conduct random searches. 
These steps are repeated until a stopping criterion is met. 

4. EXPERIMENTAL INVESTIGATIONS 

The airborne LIDAR data used in the experimental 
investigations have been recorded with TopScan's Airborne 
Laser Terrain Mapper system ALTM 1225 (TopScan, 2004). 
The data are recorded in area of Rheine in Germany. Two 
different patches with residential and industrial pattern were 
selected to test the developed algorithm. The selected areas 
were suitable for the evaluation of the proposed classification 
strategy because the required complexities (e.g. proximities of 
different objects e.g. building and tree) were available in the 
image (figure 1-a, b). The pixel size of the range images is one 
meter. This reflects the average density of the irregularly 
recorded 3D points which is fairly close to one point per m2. 
Intensity images for the first and last echo data have been also 
recorded and the intention was to use them in the experimental 
investigations, Figure 1 shows the details of the test data. The 
impact of trees in the first and last echo images can be easily 
recognized by comparing the two images of this figure. 
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c d 

  
e f 

  
g  h  

Figure 1. a) Aerial image of residential area. b) Aerial image of 
industrial area. c) First echo LIDAR range data of residential 

area. d)  First echo LIDAR range data of industrial area. e) Last 
echo LIDAR range data of residential area. f) Last echo LIDAR 
range data of industrial area. g) Overlaid of manually digitized 
objects in residential area; h) Overlaid of manually digitized 

objects in residential area 

The first step in every clustering process is to extract the feature 
image bands. The features of theses feature bands should carry 
useful textural or surface related information to differentiate 
between regions related to the surface. Several features have 
been proposed for clustering of range data. Axelsson (1999) 
employs the second derivatives to find textural variations and 
Maas (1999) utilizes a feature vector including the original 
height data, the Laplace operator, maximum slope measures and 
others in order to classify the data.  In the following 
experiments we used five types of features: 
 LIDAR range data 
 The difference between first and last echo range images 
 Top-Hat filtered last echo range image 

   
a                                               b 

   
c                                                   d 

  
e                                               f 

Figure 2. a) Manually digitized objects in residential area. b) 
Manually digitized objects in industrial area. c) Clustering 

results of k-means in residential area. d) Clustering results of 
k-means in industrial area. e) Clustering results of artificial 

swarm bee colony algorithm in residential area. f) Clustering 
results of swarm bee algorithm in industrial area. 

 
 
 Local height variation which is computed using a small 

window (3*3) around a data sample.  
 Last echo intensity 

The normalized difference of the first and last echo range 
images is used as the major feature band for discrimination of 
the vegetation pixels from the others. According to the 
above defined features, the k-means and artificial 
swarm bee algorithm were developed based on the 
parameters listed in table 1.  

Table 1. Parameters used in the clustering of LIDAR datasets 

Algorithm Parameters Value  
k-means Maximum number of iterations 1000

Artificial 
swarm bee

colony 
algorithm

Number of scout bees, n 35 
Number of sites selected for neighbourhood 

search, m 
11 

 
Number of best “elite” sites out of m 

selected sites, e 
2 

Number of bees recruited for best e sites, 
nep 

7 

Number of bees recruited for the other (m-
e) selected sites, nsp 

3 

Number of iterations, R 200 
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Evaluation of these two algorithms for clustering of the data 
sets into three clusters (ground, tree, and building) is depicted in 
figure 2. Figures 2c and 2d show the k-means clustering results 
and figures 2e and 2f show the artificial bee colony algorithm 
clustering results in two evaluation areas. Building class regions 
are highlighted by red and vegetation class regions by green 
colour in figure 2. Visual inspections shows that vegetation 
class is directly associated with trees, bushes or forest and the 
building class is mainly associated with building regions.  

4.1 Accuracy Assessment 

Comparative studies on clustering algorithms are difficult due 
to lack of universally agreed upon quantitative performance 
evaluation measures. Many similar works in clustering use the 
classification error as the final quality measurement (Zhong and 
Ghosh, 2003); so in this research, we adopt a similar approach. 
In this paper, confusion matrix used to evaluate the true labels 
and the labels returned by the clustering algorithms as the 
quality assessment measure. If some ground truth is available, 
the relation between the ''true'' classes and the classification 
result can be quantified. With the clusters the same principle 
can be applied. Mostly a much higher number of clusters is then 
related to the given ground truth classes to examine the quality 
of the clustering algorithm. From the confusion matrix we 
calculate the Kappa Coefficient (Cohen, 1960). Although the 
accuracy measurements described above, namely, the overall 
accuracy, producer’s accuracy, and user’s accuracy, are quite 
simple to use, they are based on either the principal diagonal, 
columns, or rows of the confusion matrix only, which does not 
use the complete information from the confusion matrix. A 
multivariate index called the Kappa coefficient (Tso and 
Mather, 2009) overcomes these limitations. The Kappa 
coefficient uses all of the information in the confusion matrix in 
order for the chance allocation of labels to be taken into 
consideration. The Kappa coefficient is defined by: 
 

݇ ൌ
ܰ ∑ ݔ


ୀଵ െ ∑ ሺݔା ൈ ାሻݔ


ୀଵ

ܰଶ െ ∑ ሺݔା ൈ ାሻݔ
ୀଵ

 

 

In this equation, ݇ is the kappa coefficient, r is the number of 
columns (and rows) in a confusion matrix, xii is entry (i, i) of the 
confusion matrix, xi+ and x+i are the marginal totals of row i and 
column j, respectively, and N is the total number of 
observations (Tso and Mather, 2009). 

Table 2 shows the confusion matrix and Kappa coefficient of k-
means and artificial swarm bee colony algorithms clustering in 
residential dataset. The confusion matrix and Kappa coefficient 
of k-means and artificial swarm bee colony algorithms 
clustering in industrial dataset presented in Table 3. 
 
By comparing the counts in each class, a striking difference to 
the artificial swarm bee colony algorithm result is clearly 
observed. For the two classes of major interest in this study, the 
building class and tree class, the differences are quite 
significant. Visual interpretation clearly indicates that the 
building class of k-means not only include building areas but 
also regions related to roads which supports the smaller number 
of counts of the artificial swarm bee colony method to be more 
precise. Similarly the higher number of counts for the tree class 
indication (3D) vegetation regions (trees, bushes) obtained with 
the artificial swarm bee colony algorithm method is supported 
by visual interpretation. Overall performance of artificial bee 
colony algorithm is outperforming k-means clustering 
algorithm. This can be observed from the Kapa coefficient. 

Table 2. Confusion matrix and Kappa coefficient of k-means 
and artificial swarm bee colony algorithms in residential area. 

Reference Data 

k-
m

ea
ns

 

Total Ground Tree Building  

66227338 155164338Building 

681835930 586923561Tree 

355590290740 1050954341Ground 

490000297008 70752122240Total 
Kappa coefficient = 0.6927 

 

Reference Data 

B
ee

 a
lg

or
it

hm
s

 

Total Ground Tree Building  
1237595686 3471114602Building 

693916144 611232124Tree 

296850285078 75584214Ground 

490000296908 72152120940Total 
Kappa coefficient = 0.8916 

 
Table 3. Confusion matrix and Kappa coefficient of k-means 
and artificial swarm bee colony algorithms in industrial area. 

Reference Data 

k-
m

ea
ns

 
Total Ground Tree Building  

301541108 216826878Building 

3999105 3707187Tree 

168347139025 1287916443Ground 

202500140238 1875443508Total 
Kappa coefficient = 0.584 

 

Reference Data 

B
ee

 a
lg

or
it

hm
s

 

Total Ground Tree Building  
427832097 115839528Building 

177701290 15641839Tree 

141947134622 34833842Ground 

202500138009 2028244209Total 
Kappa coefficient = 0.866 

5. CONCLUSION 

This paper presented and tested a new clustering method 
based on the artificial bee colony algorithm in extracting 
buildings and trees form LIDAR data. The method employs 
the artificial swarm bee colony algorithm to search for the set 
of cluster centres that minimizes a given clustering metric. 
One of the advantages of this method is that it does not 
become trapped at locally optimal solutions. This is due to the 
ability of the artificial swarm bee colony algorithm to perform 
local and global search simultaneously. Experimental results 
for different LIDAR data sets have demonstrated that the 
artificial swarm bee colony algorithm method produces better 
performances than those of the k-means algorithm. One of the 
drawbacks of the artificial artificial swarm bee colony 
algorithm, however, is the number of tunable parameters it 
employs.  
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